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ABSTRACT

Modelling the effects of material microstructure has attracted significant interest in recent years. A land-
mark contribution is due to Mindlin [1], who considered degrees of freedom of micro-deformationψij

at each material point, in addition to the three displacements. In Mindlin’s elasticitywith microstruc-
ture, energy is stored due to strainǫij , relative deformationγij = uj,i−ψij (whereuj,i the displacement
gradient) and the micro-deformation gradientκijk = ψjk,i, leading to an expression for the strain en-
ergy density with 18 material constants in the isotropic case [1]. The resulting12 governing equations
can be discretised using standard finite element techniques and shape functions [2].

Two other well-known approaches are the gradient approach, wherehigher order strain gradients are
included in the strain energy density, and the Cosserat approach, where additional degrees of freedom of
point rotation are considered along with the usual translational ones. Boththeories result to additional,
higher order terms in the governing equations and are, as a result, more complicated to treat numerically
with the finite element method than classical elasticity. Gradient elasticity, in particular, contains strain
gradient terms in the virtual work expression, leading to the requirement for C1 interpolation if the
displacement field only is discretised. Appropriate elements exist and perform very well [3][4], however
the approach is often seen as complicated and/or computationally costly. Cosserat elasticity is simpler
to implement, as the additional terms can be treated using standard shape functions.

It has been shown that both gradient elastic and Cosserat continua arelimiting cases within Mindlin’s
framework [1]. In particular, the gradient elastic medium corresponds tothe limit where micro-
deformations coincide with the displacement gradient, i.e. where relative deformation vanishes. Sim-
ilarly, Cosserat elasticity corresponds to the limit where the symmetric part of the micro-deformation
(i.e. the micro-strain) vanishes, but not the antisymmetric part, which gives rise to the Cosserat rotation.

Here we exploit these facts by producing appropriate combinations of material parameters that enforce
the above limits in an approximate manner, and then using the finite element discretisation of Mindlin’s
elasticity with microstructure to produce numerical solutions for the corresponding gradient elastic [2]
and Cosserat solids. This approach is equivalent to using a penalty method, as some of the material
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Figure 1: Shearing a gradient elastic layer: maximum solution error vs mesh refinement.
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Figure 2: Shearing a Cosserat elastic layer: maximum solution error vs meshrefinement.

parameters take the role of expressing the relevant constraints. Good quality approximate solutions
are obtained, and errors of less than 1% can be achieved in benchmark boundary value problems (e.g.
Figures 1 and 2)

The presented approach gives an arguably simpler to implement alternativeto the more complicated and
computationally expensive treatments commonly used for gradient elasticity. Inaddition, it provides a
unified framework within which good quality numerical solutions can be produced for the three different
types of continuum (elastic with microstructure, gradient and Cosserat) bya single finite element code.
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