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ABSTRACT

The bone mechanotransduction is an important phenomenon involved in many biological processes in
the living bone. Due to porous structure of the cortical bone, any dynamic mechanical loading causes
fluid flow through the hierarchy of pores arranged in the bone units called osteons. These are distributed
almost periodically and involve pores of different sizes; from the Haversian canal forming the axis of
each osteon the fluid can enter the system of lacuno-canalicular porosities which drains the porous
ultrastructure of the collagen apatite matrix which, thus, presents the second level of porosity.

Fig. 1: The decomposi-
tion of Y (a 2D scheme).

We consider the bone tissue as the double porous medium, see e.g. [2],
fluid saturated medium with periodic structure. The hierarchy of pores is
considered at the level of osteons, canalicular network and solid porous
matrix. It is represented by the representative periodic cell Y = Π3

i=1]0, bi[
with the decomposition Y = YM ∪YC ∪ ∂CYM , where ∂CYM is the inter-
face, see Fig. 1; domain YC reflects the system of the connected Haversian
and Volkmann canals relevant to the meso-scale, generating a periodic lat-
tice, whereas YM is occupied by the porous matrix involving the canalicu-
lar network which is represented using the anisotropic elasticity Eijkl and
permeability κM

ij , tensors.

Following the ideas reported in [1], the homogenization method is applied to the Biot model of the
porous deforming medium, where the elasticity, permeability and the Biot parameters defined locally
describe the bone ultrastructure. The dual porosity is accounted for by scale dependent permeability in
YM , thus

Kij(y) = χC(y)κC
ij(y) + χM (y)ε2κM

ij (y) , y ∈ Y,

where ε > 0 is the scale parameter, χD is the characteristic function of domain YD, D = C,M .

Using the unfolding method of homogenization [1], we obtained the macroscopic model describing
the deformation induced flow [1,4] in the porous viscoelastic skeleton. The displacements u and the



time-integrated pore pressure P satisfy the “macroscopic” problem, involving the homogenized visco-
elasticity, Eijkl, Hijkl, the homogenized Biot coefficients, Bij ,Fij , the homogenized Biot moduli,
M,G, and the homogenized permeability of the interconnected porosities, Cij : for a.a. t ∈]0, T [ find
u ∈ V and P ∈ Q (with P (0) = 0) such that∫

Ω
Eijklekl(u)eij(v) +

∫
Ω

∫ t

0
Hijkl(t− τ)ekl(

d
dt

u(τ)) dτ eij(v)

−
∫

Ω
(Bij + Fij(0+))

d
dt

P eij(v)−
∫

Ω

∫ t

0
Fij(t− τ)

d
dτ

P (τ) dτ eij(v) =
∫

Ω
f · v ,∫

Ω
Bijeij(u) q +

∫
Ω

∫ t

0
Fij(t− τ)eij(

d
dτ

u(τ)) dτ q +
∫

Ω
Cij∂jP∂jq

+
∫

Ω
M d

dt
P q +

∫
Ω

∫ t

0
G(t− τ)

d
dτ

P (τ) dτ q = 0 ,

for all v ∈ V0 and q ∈ Q0, where V,Q are admissibility sets for u and P , resp., while V0, Q0 are
the associated test spaces. While Cij is determined only by the permeability and the geometry of YC ,
the viscoelastic properties as well as the homogenized parameters of the Biot type are computed by
the characteristic responses: the correctors of the macroscopic strains and of the pressure field. These
correctors solve the microscopic equations governing the Darcy flow in the deforming porous matrix.
They are defined in the representative periodic cell, see Fig. 1, and retain some features of the original
Biot model which is the subject of the upscaling procedure. The fluid seepage is restricted just to the
dual porosity in subdomain YM .

In the paper we discus the multiscale modeling of the compact bone poromechanics, the deformation
induced flow in the hierarchy of the pores, regarding its specific structural geometry at several scales
of heterogeneities. In the numerical examples computed using our FE code we illustrate some options
of the modeling: 1) quantification of the homogenized constitutive parameters (the viscoelasticity and
permeability) for a given micro- and meso-structure; this allows for identification of the microstructure-
related constitutive parameters (the elasticity and the permeability) using measurements at the meso-
scopic scale; 2) localization of strain, stress, pressure and diffusion velocity for a defined geometry
(micro/meso scales) and for a given local macroscopic response.

The further research will pursue the fluid transport in bone pores and the associated stress generated
streaming potentials [3], once the model is enriched by the convection–diffusion of dissolved charged
species (cations, anions). Thus, the present model provides a framework for a systematic development
of a microstructure-oriented model of bone tissue remodeling and growth.
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