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ABSTRACT 

Various theories of rigid plastic solids provide an adequate description of material 
response in the modelling of manufacturing processes in powder metallurgy. In many 
cases neglecting the elastic portion of strain makes no essential effect on the final result. 
Efficient numerical methods can be developed for solving the corresponding boundary 
value problems to significantly reduce the computing time, as compared with traditional 
finite element methods for elastic-plastic constitutive equations. A typical example of 
such an approach is the numerical procedures based on the method of characteristics in 
the theory of rigid perfectly/plastic materials [1]. However, the system of equations for 
plastic flow of powder and porous materials is not always of the hyperbolic type [2]. 
Therefore, it is important to understand the qualitative behaviour of solutions in the 
vicinity of surfaces with special properties, which can cause difficulty with numerical 
integration of equations. One type of such surfaces is the interface between deforming 
material and rigid tool. Since the tool is supposed to be rigid, the in-surface strain rates 
vanish at sticking. This is a strong restriction on the velocity field and in many cases the 
regime of sticking is not compatible with other boundary conditions in rigid plasticity [3, 
4]. In turn, the regime of sliding can lead to singular solutions such that the equivalent 
strain rate approaches infinity at the friction surface [4, 5]. However, this property of 
solutions depends on the constitutive equations chosen. Another possible difficulty with 
numerical integration of equations of rigid plasticity is the appearance of rigid zones 
where the system of equations is not complete. The purpose of the present study is to 
show qualitative features of rigid plastic solutions for porous and powder materials by 
means of a simple example.  

The initial/boundary value problem considered consists of a planar deformation 
comprising the simultaneous shearing and contraction of a hollow cylindrical specimen 
of porous material. Symmetry in the circumferential direction dictates that all quantities 
are a function of the radial direction only. The outer cylindrical boundary contracts and 
is fixed against rotation, the radius of the inner boundary is constant and the boundary 
rotates, thereby inducing a shearing motion in the material. Two different regimes may 



 

be identified, when the material sticks to the inner boundary and when the material slips 
at the boundary. The main questions addressed in the paper are: (i) Is it always possible 
to find the solution at sticking? and (ii) Is the solution singular at the friction surface?  

The plasticity theory for porous materials proposed in [6, 7] is adopted. The theory is 
based on a pressure dependent yield criterion and its associated flow rule.  It has been 
shown that the final equation for the radial velocity is written in the form 
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θ= Φ                 (1) 

where θ  is the porosity and Φ  is the known function of its arguments. The porosity is 
also a known function of r. Thus (1) is a linear differential equation of first order. Since 
one of the boundary conditions requires that 0ru =  at the inner radius, it is obvious that 
the solution to (1) is , unless the function 0ru = Φ  is of a special form. The latter case 
is studied in detail. It is concluded that in general a rigid zone exists at the beginning of 
the process. At this stage of the process 0ru =  at a moving radius where the function 

 satisfies the conditions that ensure the existence of a non-trivial solution to equation 
(1) in the domain between the moving radius and outer radius of the cylinder (plastic 
zone). The domain between the moving radius and the inner radius of the cylinder 
remains rigid. The moving radius propagates to the inner radius of the cylinder. Once 
the plastic zone has occupied the entire domain between the inner and outer radii, the 
regime of sliding becomes possible. This case is also investigated in detail. In particular, 
an asymptotic representation of the velocity field in the vicinity of the inner boundary at 
sliding is found. It is also shown that the velocity field may be singular in the vicinity of 
the inner radius at sliding. It is believed that these qualitative features of the solution are 
common for a wide class of problems in the theory of rigid plasticity for porous and 
powder materials. 
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