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ABSTRACT

Fluids are composed of molecules that behave in accordance with Hamiltonian Dynamics. For small
systems, i.e. small number of molecules, all relevant properties of a fluid flow can be obtained from
Molecular Dynamics (MD) simulations [1]. As the system sizeincreases, the number of molecules how-
ever increases to a level that makes MD simulations infeasible. Fortunately, large number of molecules
exhibit an ensemble behaviour which makes it possible to treat them as a continuum. All relevant prop-
erties of the fluid flow can therefore be determined by solvinga system of partial differential equations
such as the Euler or Navier-Stokes equations.

For problems that reside in the transitional regime, i.e., asystem that includes regions characterized by
molecular behaviour and regions where the continuum description is appropriate, some try to seek an
adaptive model which couples the MD simulations with the partial differential equations. For problems
in which the interest is restricted to average quantities ofthe fluid flow, such as temperature or pressure
or heat-fluxes across a boundary, MD simulations do not make sense, as average quantities of a fluid
are essentially independent of the properties of individual molecules. MD therefore provides severely
redundant information. Such problems can be adequately described in terms of a probability distribution
that specifies the probability density of a generic moleculein state space. This is precisely what the
Boltzmann equation does.

The Boltzmann equation describes the evolution of a one-particle distribution function and is given
by [2]:
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The main difficulty of this equation resides in the fact that it is posed in a high dimensional solution
space: For a problem withd spatial dimensions, its solution is a scalar functionR+ × R

2d → R+.

Efficient solution techniques for the Boltzmann equation have formed an active area of research. There
are simulation methods such as the one from Bird [5] or Nanbu.Another method solves (1) by reducing
the number of possible velocities [6], known as the DiscreteVelocity Method (DVM). Recently, a
spectral Fourier method was introduced that, for some specific types of potentials, reduced the integral
expression to one dimension [3, 4].



In this contribution, we will present a solution approach based on mixed finite-element/spectral for-
mulation. The general idea is to use an approximation basis that contains the so-called Maxwellian
solutions of the Boltzmann equation. These solutions have the form,

f = ea(x,t)+b(x,t)·u+c(x,t)|u|2 . (2)

In particular, instead of solving forf(x, u, t), we now have to determine thed + 2 coefficientsa(x, t),
b(x, t) and c(x, t), which are however independent ofu. This reduces the problem dimension with
3, but increases the degrees of freedom per node. With the form (2), only equilibrium behaviour can
be represented, analogous to for instance the Euler equations. However, for areas where we expect
significant non-equilibrium behaviour, the approximationcan beenrichedby introducing higher order
terms (the full second-order tensor instead of|u|2, third-order terms, etc.). This approach increases the
number of coefficients in regions with significant non-equilibrium behaviour.

To solve the Boltzmann equation for Maxwellian solutions, we use theDiscontinuous Galerkinmethod
(dG). The dG method has outstanding properties for solving hyperbolic equations such as (1). Moreover,
in the dG method the enrichments can be introduced without essential complications. To get acquainted
with the procedure, we first consider the prototypical projection problem:

Find α, β, γ ∈ V3 such that,
∫

Ω

∫
V

(a(x, t) + b(x, t) · u + c(x, t)|u|2) eα(x,t)+β(x,t)·u+γ(x,t)|u|2 dV dΩ =

=

∫
Ω

∫
V

(a(x, t) + b(x, t) · u + c(x, t)|u|2) g(x, u, t) dV dΩ ∀ a, b, c ∈ V3,

(3)

whereV represents a finite-element space andg(x, u, t) is a prescribed function.

Furthermore, we consider a one-dimensional Boltzmann problem. In the one-dimensional case, the
Boltzmann equation reduces to a Knudsen problem in which thecollision term becomes zero [2] and
the solution is completely determined by the boundary conditions. The FEM results are compared with
the results of an equivalent molecular dynamics simulation.
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