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ABSTRACT

The Bayesian inference and feed-forward neural networks are adequate tools in the regression analysis,
defined as a mapping of input onto output variables. Joining Bayesian background and application of
Standard Neural Networks (SNNs) gives the Bayesian Neural Networks (BNNs). BNNs were initiated
at the beginning of 1990s, especially due to MacKay and Neal (cf. references in [1]) who stated that
the development of computer hard- and software was a good base to consume a great potential of the
Bayesian approaches.

BNNs are probabilistic networks. In the paper we discuss a special case of BNNs with deterministic
input x ∈ RD and a scalar random outputy(x;w), wherew is a random vector of weights. BNNs
learning and predictions are based on the Bayes’ theorem:

p(w|X, t, α, β) =
p(t|X,w, β)p(w|α)

p(t|X, α, β)
, (1)

which can be verbalized asposterior = likelihood× prior / evidence. The evidence is an integral in
which the integrand is taken over all values of the vectorw = {wi}

W
i=1

:

p(t|X, α, β) =

∫

RW

p(t|X,w, β)p(w|α)dw. (2)

In (1) and (2) the following notation is used:p – probability distribution;D = {X, t} – dataset with
input and output setsX = {xn}N

n=1
, t = {tn}N

n=1
; α, β = 1/σ2 – hyperparameters.

The generalized error function corresponding to (1) and (2)is defined in the form:

F (w) = βED(w) + αEW (w) =
β

2

N
∑

n=1

{

tn − y(xn;w)
}

2

+
α

2

W
∑

i=1

w2

i , (3)

where the termαEW (w) plays a role of regularization function.

Different Bayesian approaches, semi-probabilistic and true probabilistic, can be formulated applying
Eqs (1-3). Four of them, which use the weight vectorw, are listed in Table 1. The fifth approach,



Table 1: ANN framework, learning quantities and predictionfunctions

ANN and Bayesian frameworksLearned quantities Prediction functions
1. SNN or BNN-ML wML y(xN+1;wML)

2. BNN-MAP p(w|X, t, αin, σ
2

in) p(tN+1|xN+1;wMAP, σ
2
in)

3. S-BNN (Simple BNN) p(w|X, t, αeff, σ
2

eff) p(tN+1|xN+1, t, αeff, σ
2
eff)

4. T-BNN (True BNN) p(w|X, t, α, σ2) p(tN+1|xN+1, t, α, σ2)

5. GP (Gaussian Process) C -1
N (X), σ2, θ p(tN+1|xN+1, t, C -1

N+1,θ, σ2)
= N (tN+1|mN+1(x

N+1, C -1
N+1, t,θ), σ2)

called the Gaussian process method, is based on the covariance matrix of input dataC−1

N (X), where
X = {xn}N

n=1
. Another set of parametersθ = {θj}

J
j=1

is applied for the kernel functions formulation.

The ML (Maximum Likelihood) method corresponds to the computation of minED(w), i.e. it leads to
the formulation of SNNs. The MAP (Maximum A Posteriori) method is based on the introduction of
regularization functionEW (w). This method needs to fix in advanced the deterministic hyperparame-
tersαin andβin = 1/σ2

in. In simple BNN optimal values of hyperparametersαeff andβeff are computed in
the iterative way. In True BNN the hyperparameters are assumed to be random variables.

The MML (Maximum of Marginal Likelihood) is computed forln p(t|X, α, β), i.e. for theln of evi-
dence (3). MML is used to the estimation of optimal values of hyperparameters or design parameters of
NNs criterion.

In the paper the methods listed in Table 1 are applied to the analysis of four problems: 1) prediction of
response spectra for paraseismic excitations [2], 2) estimation of HPC concretes [2], 3) identification of
loads affected yielding of an elastic-plastic beam [4], 4) identification of mass attachment to steel and
aluminium strips [5].

It was proved that the MAP-BNN and Simple BNN give quite satisfactory accuracy to the solutions of
the discussed problems. The BNN, and especially GP, are based on new no iterative paradigms instead
of the error minimization paradigm explored in SSNs. Simple-BNN and True-BNN are supported on
the principle of parameter marginalization and GP uses the input covariance matrix.
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