
8th. World Congress on Computational Mechanics (WCCM8)
5th European Congress on Computational Methods in Applied Sciences and Engineering

(ECCOMAS 2008)
June 30 –July 5, 2008

Venice, Italy

Modifications of self-learning FEM/NMM approach to
identification of equivalent material models for plane stress

problems

* Ewa Pabisek1) and Zenon Waszczyszyn2)

1 Institute for Computational Civil
Engineering, Cracow University of Technology
ul. Warszawska 24, 31-155 Kraków, Poland
E-mail e.pabisek@l5.pk.edu.pl
URL www.L5.pk.edu.pl

2 Chair of Structural Mechanics,
Rzeszów University of Technology
ul. W.Pola 2, 35-935 Rzeszów, Poland
E-mail zewasz@prz.edu.pl

Key Words: Neural networks, Material model, Constitutive modelling.

Identification of material models in real structures is a difficult problem of solid mechanics be-
cause of material changes during the structure life. The identification corresponds to the anal-
ysis of an inverse, homogenisation problem in which an equivalent material model is searched.

It was shown in many papers (cf. references in [4]) that neural networks can be efficiently used
for implicit formulation of Neural Material Models (NMMs). Using NMMs in FEM codes leads
to hybrid FEM/NMM programs in which NMM is a numerical material procedure. The main
problem of such an approach is formulation of patterns for NMM training. In case of a known
material the patterns can be computed by means of assumed constitutive equations and then
the NMM is trained in the ‘off line’ mode [3]. In case the material model is ‘a priori’ unknown J.
Ghaboussi proposed to apply the ‘on line’ method, which he called the autoprogressive method
[1]. In this method the patterns are formulated at each increment of the loading process using
a two stage Newton-Raphson method for the correction of displacements at control points. The
NMM is retrained at each incremental load by means of an updated set of patterns computed
by the hybrid FEM/NMM program.

The autoprogressive method is very sensitive to the patterns selection since only a part of them
can be updated. Another question is formulation of input and output data in order to take into
account the history of the loading process. In case of plane stress problems the output vector
is y(3x1) = {n+1σ}, where n is a quasi time number instant. Corresponding input vectors can
be adopted in the form:

x(9×1) = 1) {n+1ε, nε, nσ}, 2) x(3x1) = {n+1ε}, (1)

where: kε =k {εx, εy, γxy}, kσ = k{σx, σy, τxy} for k = n, n + 1.

The form 1) in (1) was suggested in [2] but in the present paper the form 2) was explored,
since the vectors nε and nσ are stored in the program FEM/NMM, out of the NMM model.
The NMM input and output variables and those stored in the program FEM/NMM enable the
computation of the consistent stiffness matrix components kij = ∂∆σi/∆εj .



Another modification is related to the initial formulation of NMM and its training. The first
cycle of the computation starts from an isotropic, elastic linear model of a material but for
the subsequent steps of the initial cycle the autoprogressive method is applied. The network
architecture is formulated in the first loading cycle and then only network parameters are
updated.

The introduced modifications were verified on boundary value problems analysed in [3], see
Figures 1 and 2. The equilibrium path uA(λ) of a tension perforated strip shown in Fig. 1a,
computed for elastoplastic material, was assumed to be a measurement curve at the control
point A, see Fig. 1b. The network 3-15-15-3 was trained using two loading cycles. Then this
network was retrained on the same structure shown in Fig. 1a adding patterns corresponding to
compression of the perforated strip. A more general identified equivalent NMM-ret was applied
to the simulation of displacements in the notched beam shown in Fig. 2a. The loading paths
computed for the elastoplastic material by the FEM program is shown in Fig. 2b vs. the paths
computed by the hybrid FEM/NMM-ret program.
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Fig.1: a) Tension perforated strip,
b) Equilibrium path λ(uA)

Fig.2: a) Notched beam,
b) Equilibrium paths λ(vA) and λ(vB)
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