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ABSTRACT

Deterministic simulations are accurate nowadays due tarambd algorithms and increasing computer
power. The inherent variability of the physical system filsanodeled, is often neglected. The interest
in the inclusion of this variability in complex computat®ims increasing, since it can influence the
solution significantly. Uncertainty quantification is usgedcompute the probability distribution of the
solution based on uncertain input parameters.

When uncertainty quantification is used in combination vexisting flow solvers ideally the uncer-
tainty quantification method is non-intrusive. A non-irgine method requires several deterministic
solves using the deterministic solver as a black-box. Effichon-intrusive methods are for example
the Probabilistic Collocation method [1,2] and the Nomtisive Polynomial Chaos method [3], which
are both based on the Polynomial Chaos method [4]. For niltipcertain parameters the amount
of deterministic computations grows rapidly. For the Pholistic Collocation method the number of
points is equal tdp + 1)¢, with p the order of the approximation amtithe number of uncertain pa-
rameters. As an alternative sparse grid approaches [5] earsdd to increase the efficiency. For the
Non-intrusive Polynomial Chaos method the number of cdefiis is(d + p)!/d!p!. Hosder, Walters,
and Balch [3] showed that for a good Non-intrusive Polyndr@ihaos approximation the amount of
sampling points should be twice the number of coefficiente polynomial chaos based methods use
a global polynomial approximation of the response surface.

In this abstract the response surface is approximated E&aipl Basis Functions (RBFs) through a
limited number of support points. RBFs are used since theyaown to be efficient interpolants in
high dimensional spaces. The support points can be chossevbyal sampling strategies. Here several
combinations of different RBFs and sampling techniquesraesstigated. Recently, RBFs [6,7] became
more popular for response surface approximation. RegisStilogmaker [7] proposed a stochastic Ra-
dial Basis Function method for global optimization probeaf expensive functions. They define ex-
pensive functions as function which take from minutes t@sghhours to evaluate. Here the focus is on
CFD, where simulations take from hours to days or even weeksrpute, so the number of available
support points is minimal.
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Figure 1: Error convergence of the different RBFs for the m@ and variance (b) of the mass position
att = 10 resulting from uncertain mass and spring stiffness using CVT sampling.

The convergence of the Probabilistic Radial Basis FundfiRRBF) approach is numerically shown
using a mass spring problem. Four commonly used RBFs arédened, i.e. Gaussian (G), Thin plate
spline (TPS), Inverse multiquadric biharmonic (IMQB), ahd Multiquadric biharmonic (MQB) func-
tions. The RBFs contain a shape parameter, which is settal for the convergence study. Figure 1
shows the convergence of the mean (a) and the variance (theféour different RBFs using centroidal
voronoi tessellation (CVT) sampling, which yield an eqstdint distribution of the samples. More de-
tails on the PRBF approach and the sampling of the suppantgpoan be found in reference [6].

The PRBF approach is applied to a turbulent Navier-Stokespadation around a NACAQ0012 airfoil
with four uncertain parameters. The free stream Mach nurabhdrangle of attack are assumed to
be uncertain, as well as the geometry of the airfoil. The NAGE2 airfoil is parameterized by the
maximum camber, maximum camber location and relative tiask. Here the maximum camber and
relative thickness are assumed to be uncertain. The freanstMach number is 0.3 and the airfoil is
at an angle of attack of 5 degrees. The deterministic simounisitare performed using a commercial
flow solver on a hexahedral grid of 80,000 cells. The Reynaldgaged Navier-Stokes equations are
solved using the Spalart-Allmaras turbulence model, the foconsidered fully turbulent. The free
stream Mach number has a meafy = 0.3 and a standard deviatiany; = 0.03, on the interval
[0.23,0.37]. The mean angle of attack is, = 5° with a standard deviatios, = 0.50°, in the interval
[3.84°,6.16°]. The geometric parameters that represent the uncertaiatthe thickness of the airfoil
in percents of the chord with mean = 12%, a standard deviation; = 0.425% and truncated to
the interval [11%,13%] and the maximum camber in percente®thord, which has mean. = 0%,
standard deviation,. = 0.4472 and is truncated in the interval [-1%,1%)]. The uncertaistgropagated
using the Probabilistic Radial Basis Function approachgigie Gaussian RBF, with 35 support points
obtained from Halton sampling. The flow solver is run deteistically for every sample.

Figure 2 shows the convergence of the lift-over-drag ratid wespect to the number of samples for
different values of the shape parametersing the Gaussian RBF. A larger shape parameters results in
more localized RBFs, the figure shows that with this low nundisamples a more global RBF results

in a better approximation of the medrn/ D. The meanL/D converges to 42.17, which is 1% lower
than the deterministic value of 42.59. The standard dendiecomes,p = 4.051, which results in

a coefficient of variation o€'Vy/p = (1/0),,p = 9.6%.
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Figure 2: The convergence of the mean lift- Figure 3: The mean pressuré @long the sur-
over-drag ratio with respect to the number of face of the airfoil with the bars indicating the
samples for varying shape parameteusing standard deviation of the pressure, obtained
the Gaussian RBF. The deterministic value is using the Gaussian RBF with shape parameter
indicated by the dashed red line) c=0.25.

The pressure on the airfoil surface is presented in Figuf@@mean pressure is shown with uncertainty
bars indicating the area of plus and minus one standard tamvidt can be seen that the uncertain
parameters result in the largest variation in the pressutbeupper part of the airfoil and mainly near
the leading edge.
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