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ABSTRACT

Deterministic simulations are accurate nowadays due to advanced algorithms and increasing computer
power. The inherent variability of the physical system thatis modeled, is often neglected. The interest
in the inclusion of this variability in complex computations is increasing, since it can influence the
solution significantly. Uncertainty quantification is usedto compute the probability distribution of the
solution based on uncertain input parameters.

When uncertainty quantification is used in combination withexisting flow solvers ideally the uncer-
tainty quantification method is non-intrusive. A non-intrusive method requires several deterministic
solves using the deterministic solver as a black-box. Efficient non-intrusive methods are for example
the Probabilistic Collocation method [1,2] and the Non-intrusive Polynomial Chaos method [3], which
are both based on the Polynomial Chaos method [4]. For multiple uncertain parameters the amount
of deterministic computations grows rapidly. For the Probabilistic Collocation method the number of
points is equal to(p + 1)d, with p the order of the approximation andd the number of uncertain pa-
rameters. As an alternative sparse grid approaches [5] can be used to increase the efficiency. For the
Non-intrusive Polynomial Chaos method the number of coefficients is(d + p)!/d!p!. Hosder, Walters,
and Balch [3] showed that for a good Non-intrusive Polynomial Chaos approximation the amount of
sampling points should be twice the number of coefficients. The polynomial chaos based methods use
a global polynomial approximation of the response surface.

In this abstract the response surface is approximated usingRadial Basis Functions (RBFs) through a
limited number of support points. RBFs are used since they are known to be efficient interpolants in
high dimensional spaces. The support points can be chosen byseveral sampling strategies. Here several
combinations of different RBFs and sampling techniques areinvestigated. Recently, RBFs [6,7] became
more popular for response surface approximation. Regis andShoemaker [7] proposed a stochastic Ra-
dial Basis Function method for global optimization problems of expensive functions. They define ex-
pensive functions as function which take from minutes to several hours to evaluate. Here the focus is on
CFD, where simulations take from hours to days or even weeks to compute, so the number of available
support points is minimal.
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Figure 1: Error convergence of the different RBFs for the mean (a) and variance (b) of the mass position
at t = 10 resulting from uncertain massm and spring stiffnessk using CVT sampling.

The convergence of the Probabilistic Radial Basis Function(PRBF) approach is numerically shown
using a mass spring problem. Four commonly used RBFs are considered, i.e. Gaussian (G), Thin plate
spline (TPS), Inverse multiquadric biharmonic (IMQB), andthe Multiquadric biharmonic (MQB) func-
tions. The RBFs contain a shape parameter, which is set toc = 1 for the convergence study. Figure 1
shows the convergence of the mean (a) and the variance (b) forthe four different RBFs using centroidal
voronoi tessellation (CVT) sampling, which yield an equidistant distribution of the samples. More de-
tails on the PRBF approach and the sampling of the support points can be found in reference [6].

The PRBF approach is applied to a turbulent Navier-Stokes computation around a NACA0012 airfoil
with four uncertain parameters. The free stream Mach numberand angle of attack are assumed to
be uncertain, as well as the geometry of the airfoil. The NACA0012 airfoil is parameterized by the
maximum camber, maximum camber location and relative thickness. Here the maximum camber and
relative thickness are assumed to be uncertain. The free stream Mach number is 0.3 and the airfoil is
at an angle of attack of 5 degrees. The deterministic simulations are performed using a commercial
flow solver on a hexahedral grid of 80,000 cells. The Reynolds-averaged Navier-Stokes equations are
solved using the Spalart-Allmaras turbulence model, the flow is considered fully turbulent. The free
stream Mach number has a meanµM = 0.3 and a standard deviationσM = 0.03, on the interval
[0.23, 0.37]. The mean angle of attack isµα = 5◦ with a standard deviationσα = 0.50◦, in the interval
[3.84◦, 6.16◦]. The geometric parameters that represent the uncertainty are the thickness of the airfoil
in percents of the chord with meanµt = 12%, a standard deviationσt = 0.425% and truncated to
the interval [11%,13%] and the maximum camber in percents ofthe chord, which has meanµc = 0%,
standard deviationσc = 0.4472 and is truncated in the interval [-1%,1%]. The uncertainty is propagated
using the Probabilistic Radial Basis Function approach using the Gaussian RBF, with 35 support points
obtained from Halton sampling. The flow solver is run deterministically for every sample.

Figure 2 shows the convergence of the lift-over-drag ratio with respect to the number of samples for
different values of the shape parameterc using the Gaussian RBF. A larger shape parameters results in
more localized RBFs, the figure shows that with this low number of samples a more global RBF results
in a better approximation of the meanL/D. The meanL/D converges to 42.17, which is 1% lower
than the deterministic value of 42.59. The standard deviation becomesσL/D = 4.051, which results in
a coefficient of variation ofCVL/D = (µ/σ)L/D = 9.6%.
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Figure 2: The convergence of the mean lift-
over-drag ratio with respect to the number of
samples for varying shape parameterc using
the Gaussian RBF. The deterministic value is
indicated by the dashed red line (--).
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Figure 3: The mean pressure (–) along the sur-
face of the airfoil with the bars indicating the
standard deviation of the pressure, obtained
using the Gaussian RBF with shape parameter
c = 0.25.

The pressure on the airfoil surface is presented in Figure 3.The mean pressure is shown with uncertainty
bars indicating the area of plus and minus one standard deviation. It can be seen that the uncertain
parameters result in the largest variation in the pressure on the upper part of the airfoil and mainly near
the leading edge.
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