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ABSTRACT 

The ADER approach is the extended Godunov-type schemes[1]  which construct non-
oscillatory explicit one-step schemes with very high order of accuracy in space and time 
by solving the DRPs (derivative Riemann problems).  The ADER approach has been 
developed from the schemes for the linear scalar hyperbolic equations[2] to those for 
nonlinear multi-dimensional systems[3,4,5,6,7], and further to those for the equations 
with convex and non-convex fluxes[8].  In the process of developments the 
WENO[9,10] technique has been adopted to the reconstruction of cell-averaged data 
with the finite-volume framework[11], and the implementation onto the adaptive 
triangular meshes has been shown[12]. 

The ADER Schemes are now in the phase of application to practical problems.  In this 
research, benchmarks of ADER schemes are shown mainly in multi-dimensional 
phenomena such as interaction between shock waves and vortices. 
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