
8th. World Congress on Computational Mechanics (WCCM8)
5th. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008)

June 30 – July 5, 2008
Venice, Italy

Parallel Programming Techniques for DEM Models on Distributed
Memory Machines

*Raju V. Kala, John F. Peters and Robert S. Maier

U.S. Army Engineer Research and Development Center,
3909 Halls Ferry Road,

Vicksburg, MS 39180, USA
Raju.V.Kala@erdc.usace.army.mil
John.F.Peters@erdc.usace.army.mil

Robert.S.Maier@erdc.usace.army.mil

Key Words: DEM, Parallel Programming, Particles, Computing Methods, MPI

ABSTRACT

Since its introduction by Cundal and Strack [1] the discrete element method (DEM) has
become a powerful tool to study the micromechanics of materials such as soil or rock
systems [2]. DEM studies depend on high performance computer systems to
accommodate the large number of particles involved in the systems. The advent of
super computers and parallel programming had made these studies possible. This paper
addresses one such parallel program (DEM-p) for discrete elements or particles. It is
based on the code described by Horner and his colleagues [3][4] that was revised to
improve modeling rigid objects, membranes (for modeling tri-axial tests), and contact
laws that include resistance against particle rotations. This paper mainly addresses the
computational or implementation issues to writing parallel DEM programs using the
Message Passing Interface (MPI) Library for communication among the processors.

The principal component of the DEM system is the force calculated for each particle
and the displacement of the particle due to this force. Accordingly, contact detection and
contact resolution is the most critical and processor intensive operation of the DEM
codes. It usually takes up about 65-80% of the total computing time. Contact detection
identifies the potential contact pairs whereas contact resolution computes the actual
penetration distance between the two particles. A naïve contact detection search would
require a check between every particle pair in the system, leading to an algorithm that
scales by O(N2). In larges particle systems, the contact detection is typically localized to
immediate neighbors using neighbor cell methods. DEM-p program uses a hierarchal
search method [5], to improve efficiency when particles are distributed over large size
ranges. For parallel DEM code, the challenge is to distribute cell information among
processors such that communication of neighbor cell information is minimized.

Data structures to store and manipulate the data efficiently are essential for good
performance. They must accommodate parallelization with minimal communication
overhead and without unduly complicating the algorithms. A three dimensional (3-D)
cell structure is used to create neighbor lists. The cells are divided along the cell

boundaries and assigned to multiple processors for computations. The cell structure is
constructed using a three dimensional array of pointers and facilitates storing the cell
contents as a linked list. A hierarchical cell structure [5] is also used to maintain one or
more nested 3-D cell structures or levels to store data of the particles of different sizes
and is designed to avoid one-to-many and many-to-many potential contact situations.
The particles and their contacts must be stored in a way that it is easier to access a
particle’s contact list to check if a contact had already existed before and update the
contact force. Also, the data structures must accommodate movement of a particle from
one processor to another with minimal overhead. In addition, the processors must be
able to access the particles that are in the border cells (ghost cells) of the neighboring
processor during contact detection and resolution.

The performance of the system depends on the number of particles per processor and
load balance. DEM-p program uses recursive bisection method to achieve good load
balance. The code has been tested for performance for up to 5 million particles on 256
processors and has been ported and tested on several platforms, including the Cray T3E,
SGI Origin 3000 and Compaq SC45. The code scales well on all machines although as
illustrated through examples, the performance depends on many variables such as
particle distribution, problem nature, number of contacts, ratio of the biggest to the
smallest particle and particles per processor. Many of these observations appear to be
common to all DEM codes, not just the current implementation. All of the testing of
DEM-p program was done in parallel using spherical particles, whose locations and
radii were given as input in the beginning. The cell space technique is still valid to store
the non-spherical data [6] via a bounding sphere that is used to assign these particles to
the cells.

REFERENCES

[1] Cundall, P. A., Strack, O. D. L. (1979) A discrete numerical model for granular
assemblies, Geotechnique, Vol. 29, No. 1, pp 47-65.

[2] Cundall, P. A. 2002, “A discrete future for numerical modeling” Discrete Element
Methods: Numerical Modeling of Discontinua, ASCE Geotechnical Special Publication
No. 117, 3-4.

[3] Carrillo, A.R., West, John E., Horner, David A., Peters, J. F. (1999) “Interactive
Large-Scale Soil Modeling using Distributed High Performance Computing
Environments”, The International Journal of High Performance Computing Application,
Vol. 13. No.1, pp.38-48.

[4] Horner, D. A., Peters, J. F., and Carrillo, A. J. (2001) “Large Scale Discrete Element
Modeling of Vehicle-Soil Interaction,” Journal of Engineering Mechanics, Vol. 127,
No. 10, pp 1027-1032

[5] Peters, J. F., Kala, R., and Maier, R. S. “A Hierarchal Search Algorithm for DEM
with Greatly Differing Particle Sizes”, Proceedings of Discrete Element Methods 07.

[6] Peters, J. F., Hopkins, M. A., Kala, R., and Wahl, R. E. “A Polly-Ellipsoid Particle
for Non-Spherical DEM”, Proceedings of Discrete Element Methods 07.

