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ABSTRACT 

This paper presents a Linear Complementary Problem (LCP)-based numerical 
procedure using mesh-free method[1] for gradient elasto-plasticity continuum[2-5], in 
which the yield strength of strain softening materials not only depends on the effective 
plastic strain but also on its Laplacian. Both primary unknowns, i.e. the plastic 
multiplier and displacements are taken as the field variables and approximated in terms 
of moving least square (MLS) interpolations with their discrete values defined at nodal 
and quadrature points respectively. As the MLS shape function is enriched with a 
weight function (positive, even and with a compact support) such as the quartic spline to 
traditional interpolation base functions, which usually constitutes a complete basis of 
the subspace of polynomials, it gains an advantage over the FE shape functions in its 
high-order continuity particularly for the interpolation approxiamtion of the plastic 
multiplier in the gradient plasticity continuum[3].   

The global equilibrium equation in the weak form, the non-local constitutive equation 
and yield criterion enforced at each local quadrature point in a strong form, i.e. in a 
point-wise fashion, are combined to result in a formula with the same format as that 
stated in the linear complementary problem (LCP[6]), i.e.          
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The LCP usually denoted by )( i
A F,H  is composed of the non-local yield criterion and 

non-negativity of plastic multipliers 1+∆ iΛ  enforced at each local quadrature point. The 
plastic multipliers 1+∆ iΛ  are then determined by using the Lexico-Lemke algorithm [6]               
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A Newton-Raphson (N-R) iterative solution scheme devised for each incremental load 
step is derived, in which, in contrast with existing (traditional) iterative schemes, both 
iterations to respectively fulfill the momentum conservation and constitutive equations 
satisfying non-local yield criterion at each local quadrature point are simultaneously 
executed.  

It should be stressed that as compared with the existing work[7] using the LCP setting 
for  gradient   plasticity   the  contributions  of   the  proposed  LCP-based  numerical 



 

 procedure lie in the following points:  

 (1) the proposed procedure does not require to form a consistent elasto-plastic tangent 
matrix while the second order convergence of the iterative process is still ensured;       

(2) the non-local constitutive equation and the non-local yield criterion at each local 
quadrature point are fulfilled in a point-wise fashion, instead of in a weak form.    

Numerical results demonstrate the performance of the present numerical procedure in 
solving for strain localization problems. Figure 1 illustrates that though plastic strain 
distributions for all of three solution schemes agree well each other, but the proposed 
procedure performs much better than the two FE schemes in restraining spurious 
numerical oscillations of the axial stress around the weakened part of the bar.  

        

Figure 1 distributions of the plastic strain and the axial stress along the axis of the bar with strain softening material 
and a weakened part of central 10mm subjected to a pure tensile loading at the end of loading history (1) MF: 
proposed Meshfree method; (2) FE: Finite element method; (3) FE2: FE method but using the integration 
scheme as same as for MF. 
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