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ABSTRACT 

In CFD (Computational Fluid Dynamics), it is much concern to construct stable 
numerical schemes with higher-order accuracy because of a trend of trade-off 
relationships between numerical accuracy and stability.  

Regarding the numerical stability, we have the positive coefficient condition, which 
guarantees the conditions related to the stability such as monotone property of the 
numerical scheme, monotonicity prerserving condition, maximum principle, TVD 
(Total Variation Diminishing) condition and boundedness condition.  

The transport vector J associated with a quantity f in a flow field u with the diffusion  
phenomena is expressed as ),( ffuJ ∇−+= νr where the first term and the second term  
denote the advection and the diffusion, respectively. The conservation low for f is  
expressed as ,0)(/ =+∂∂ Jdivtf which corresponds to the advection-diffusion equation. 
The 1-D conservation equation is given by using the numerical fluxes x

i 2/1±φ  as  
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In the staggered grid with the velocity defined on the cell surface, the quantity f and its 
derivative are to be interpolated using f of the surrounding cells. Here we make 
derivation in case using 4 stencils to evaluate the numerical flux in one dimension.We 
expand )2,1,0,1( −=+ kf ki with respect to the cell surface point (i+1/2) into the Taylor 
series. Taking a linear combination of the those Taylor expansion series with the 
multiplication of four parameters  ),,,( ++++ δγβα  yields  
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Requiring that the right hand side of Eq.(3) may be consistent with the numerical flux 
2/1+iφ within the third-order accuracy, we obtain  
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From those three equations, we obtain β+,γ+ with a free parameter +α , which is to be 
determined from the stability condition and the requirement of minimum truncation  
errors. Thus we get  
 
                                                                                                                                         (5) 
Substituting Eq.(5) into Eq.(2) yields the finite difference equation: 
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From the positive coefficients condition  ( 0,0,0,0,0 >>>>> edcba ),  we obtain 

   
                                                                                                                                        (7) 
For the above inequalities to hold, the righthand side equations should be greater than 
the lefthand side equations. From this requirment, we obtain the stability conditions:  
                                                                                                                                                    (8) 
 
From Inequalities(8), tx ∆∆ and are determined given |u|max and ν. Then the optimum 
values of ( −+ αα , ) at local point 2/1±ix  are to be determined so that the truncation errors 
may be minimum in the stability domain given by Eq.(7). Regarding time discretization, 
the second-order Runge-Kutta method is employed, which maintains the positivity of 
resultig difference coeeficients so long as the difference coefficients in each Euler step 
calculation are positive . We call this FLUX scheme. 

 

                                                                                 Fig.1 Comparison of solutions. 

    

Fig.2 Solution for shock formation.         Fig.3 Solution for expansion wave. 
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Numerical experiments for the nonlinear 
Burgers equation: 
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were performed with Cmax=D=0.1. Figure 1 
shows the comparison of numerical solution 
with the exact solution for initial shock 
distribution. Figures 2 and 3 show the 
numerical solutions with FLUX scheme for 
a shock formation problem (n=5000) and for 
an expansion wave (n=170), respectively. 


