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ABSTRACT

This work consists in a general method for solving partial differential equations on general 2D curved
manifolds. We apply this technique to the particular case of the sphere with the aim to solve the shallow
water equations on the Earth surface. In the framework of a new ocean model based on unstructured
grids and finite elements, the discontinuous Galerkin method seems to be a good candidate since
it allows the simple use of efficient techniques as high order polynomial function space, adaptivity
and error estimation, efficient parallel computing, and exhibits superconvergence properties for the
dissipation and dispersion errors.

Classical high order methods for solving the shallow water equations on the sphere consider a
three-component velocityv = (u, v, w), each component being discretized as a scalar field, for a
three-dimensional momentum equation. Those techniques do not garantee the velocity vectors to
remain tangent to the manifold, and require then the use of explicit time schemes with a projection of
the residual and the solution on the local tangent plan at every time step. We propose here a high order
discontinuous Galerkin method considering vectorial test functions, takinginto account the manifold
curvature directly into the discrete operators. The manifold discretization is based on curved triangles
with high order polynomial mappings.

Consider a surfaceS with a parametrization~x(u, v) that maps a point(u, v) ∈ R2 from a reference
element to~x ∈ R3 lying on S as depicted in Figure (1). For a sufficiently regular manifoldS, it
is possible to define a tangent plane at any point on the surface by defining two tengential directions
(~t1, ~t2).

A tangential velocity field~v(~x(u, v)) can then be discretized to the polynomial orderp as
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Figure 1: Mapping from the 2D reference element to a 2D curved manifold element defining two tan-
gential vectors to the manifold at each point.

whereLi are the Lagrange polynomial basis functions in the reference framework, ~t1 and ~t2 are tan-
gential velocity directions on the manifold at any point~x(u, v), Ui andVi are the velocity amplitudes
at interpolation points in the directions~t1 and~t2 respectivelly andN = (p + 1)(p + 2)/2 is the number
of nodal values associated to this orderp. Normalizing the tangential directions is mandatory to be able
to represent constant solutions on the curved surface.
A discontinuous Galerkin formulation is obtained by multiplying the momentum equationby a vectorial
test function while keeping a scalar test function for the pressure in the continuity equation. Christofell
symbols to take into account the manifold curvature are implicitly contained in the discrete operators.
An implicit DIRK time scheme may then be applied since the discretization itself ensures tangent veloc-
ities. The method is validated by comparing the high-order discontinuous Galerkin results to classical
benchmarks as the Williamson test cases used in atmospheric computations.
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of Scientific Computing, Vol. 34, 26–47, 2008.

[3] B. Cockburn and G. E. Karniadakis and C. W. Shu,Discontinuous Galerkin Methods. The-
ory, computation and applications, Lecture Notes in Computational Science and Engineer-
ing, 11, Springer-Verlag Berlin, 2000.

[4] F.X. Giraldo, “High-order triangle-based discontinuous Galerkin methods for hyperbolic
equations on a rotating sphere”.Journal of Computational Physics, Vol. 214, 447–465,
2006.

[5] J.-F. Remacle and J. E. Flaherty and M. S. Shephard, “An adaptivediscontinuous Galerkin
technique with an orthogonal basis applied to compressible flow problems”.SIAM review,
Vol. 45, 53–72, .

[6] D. L. Williamson and J. B. Drake and J. J. Hack and R. Jakob and P. N. Swarztrauber,
“A Standard Test Set for Numerical Approximations to the Shallow Water Equations in
Spherical Geometry”.Journal of Computational Physics, Vol. 102, 211–224, 1992.


