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ABSTRACT

We consider the use of a control algorithm to solve a time-harmonic acousto-elastic problem in the
domain Ω ⊂ R2, which is divided into the solid part Ωs and the fluid part Ωf by the interface Γi.
Instead of solving directly the time-harmonic equation, we return to the corresponding time-dependent
equation and look for time-periodic solution. The convergence is accelerated with a control technique
by representing the original time-harmonic equation as an exact controllability problem [2, 5] for the
time-dependent wave equation
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where f , yext, f , and gext are the source terms. Length of the time interval is marked as T , pf denotes
the pressure, and us = (us1,us2)T is the displacement field. Coefficients ρf (x) > 0 and ρs(x) > 0
represent the densities of media in domains Ωf and Ωs, respectively, and c(x) > 0 is the speed of sound
in fluid domain. The stress tensor is expressed as σ(us) = λ(∇ · us)I + 2µε(us) with the linearized
strain tensor ε = 1
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, the identity matrix I, and the Lamé parameters µ and λ. The

outward normal vectors to domains Ωf and Ωs are marked as nf = (nf1, nf2)T and ns = (ns1, ns2)T .



The boundaries Γ0f and Γ0s are assumed to be rigid, whereas on the artificial boundaries Γef and Γes

we impose the conventional first order absorbing boundary conditions (see, e.g., [4]).

In addition to the system (1)-(8), we take into account the initial conditions e0 = (e0f , e0s)T and
e1 = (e1f , e1s)T , such that
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Essentially, the solution procedure of the exact controllability problem is similar to those presented
for the Helmholtz equation in [5] and for the Navier equation in [8]. After discretization, the exact
controllability problem is reformulated as a least-squares optimization problem
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where U(T ) is the global vector containing the values of the displacement us(x, T ) and the pressure
pf (x, T ) at time T at the Gauss-Lobatto points of the spectral element mesh (see, e.g., [3, 6]). The
stiffness matrices corresponding to solid and fluid parts areKs andKf , whileMs andMf are diagonal
mass matrices representing elastic and acoustic phenomena, respectively.

The minimization problem is solved with a preconditioned conjugate gradient algorithm with the block-
diagonal preconditioner diag (Ks,Kf ,Ms,Mf ). For solving linear systems with stiffness matrices in
preconditioning, we use the algebraic multigrid (AMG) method [7] (see also [1, 5]).
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