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ABSTRACT

We consider the use of a control algorithm to solve a time-harmonic acousto-elastic problem in the
domain 2 C R2, which is divided into the solid part €2, and the fluid part 7 by the interface I';.
Instead of solving directly the time-harmonic equation, we return to the corresponding time-dependent
equation and look for time-periodic solution. The convergence is accelerated with a control technique
by representing the original time-harmonic equation as an exact controllability problem [2} 5] for the
time-dependent wave equation
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where f, Yext, f, and gex are the source terms. Length of the time interval is marked as 7', py denotes
the pressure, and u, = (u,, uso)’ is the displacement field. Coefficients ps(x) > 0 and ps(x) > 0
represent the densities of media in domains Q¢ and €, respectively, and c(x) > 0 is the speed of sound
in fluid domain. The stress tensor is expressed as o(us) = A(V - ug)Z + 2ue(us) with the linearized
strain tensor € = % (Vus + (Vus)T), the identity matrix Z, and the Lamé parameters p and A. The
outward normal vectors to domains 2y and €, are marked as ny = (ns1,n fQ)T and n, = (ng1,ne)?.



The boundaries I'gs and I'gs are assumed to be rigid, whereas on the artificial boundaries I'gs and I'eg
we impose the conventional first order absorbing boundary conditions (see, e.g., [4]).

In addition to the system (I)-(8), we take into account the initial conditions ey = (eg 75 eOS)T and
el = (eyy, e1s)”, such that
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Essentially, the solution procedure of the exact controllability problem is similar to those presented
for the Helmholtz equation in [5] and for the Navier equation in [8]]. After discretization, the exact
controllability problem is reformulated as a least-squares optimization problem
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where U(T) is the global vector containing the values of the displacement u,(x,7") and the pressure
pr(x,T) at time T at the Gauss-Lobatto points of the spectral element mesh (see, e.g., [3, 6]). The
stiffness matrices corresponding to solid and fluid parts are g and Ky, while M and M ; are diagonal
mass matrices representing elastic and acoustic phenomena, respectively.

The minimization problem is solved with a preconditioned conjugate gradient algorithm with the block-
diagonal preconditioner diag (/Cs, K¢, M, M¢). For solving linear systems with stiffness matrices in
preconditioning, we use the algebraic multigrid (AMG) method [7] (see also [} 5]).
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