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ABSTRACT

Geometric uncertainties are commonly encountered in computational modeling of a wide variety of en-
gineered and natural systems. A motivating example is statistical analysis of the biomechanical integrity
of total hip replacements, where there is a pressing need to consider inter- and intra-patient variability
in the femur geometry and density distribution. There is currently very little work in the literature on
how to incorporate such models of geometric uncertainty in stochastic finite element methods.

Recently, Xiu and Tartakovsky [1] presented an elegant approach for solving partial differential equa-
tions (PDEs) on random domains. The central idea of the Xiu-Tartakovsky method is to create a spatial
mapping that transforms the original PDE into a stochastic PDE defined on a regular, deterministic do-
main. Mohan et al. [2] later revisited this problem and developed a non-intrusive strategy that couples
mesh morphing strategies with stochastic reduced basis methods.

The present work is concerned with the development of a general-purpose intrusive framework for
incorporating probabilistic models of uncertain geometries in stochastic finite element analysis. The
key objective is to enable the application of stochastic projection schemes such as those based on
polynomial chaos (PC) expansions [3] and stochastic Krylov methods [4] to efficiently solve deter-
ministic/stochastic PDEs on random domains. To illustrate the proposed approach, consider the linear
deterministic operator problem Lu(x;ω) = f(x) in x ∈ D(ω), subject to the boundary condi-
tion Bu(x;ω) = g(x) on x ∈ ∂D(ω). Here, L and B are differential operators in space R3, D is
a regular domain with ∂D(ω) as its random boundary. (Ω,F ,P) is a probability space, where Ω is
the sample space, F is the σ−algebra associated with Ω, P is a probability measure, and ω ∈ Ω.
u(x;ω) is the solution process whose statistics are of interest. Without any loss of generality, any
random boundary can be represented as the zero level set of an appropriate function r(x, θ(ω)), i.e.,
∂D(ω) = {x|r(x, θ(ω)) = 0, ω ∈ Ω}, where θ denotes a set of random variables with specified
probability density function p(θ).

Semi-discretization procedures for stochastic PDEs have been extensively studied for problems where
only the PDE coefficients are random [3]. However, when the domain of definition of the PDE is itself
random, spatial discretization is no longer straightforward. The proposed approach to solve PDEs on



random domains involves transforming the original PDE into a set of two stochastic PDEs with one-
way coupling. As discussed next, the first PDE expresses the dependance of the vertices of a spatial
mesh on the uncertain parameters θ. The solution of this PDE is then used as an input for discretization
of the original governing equations on a stochastic mesh with fixed connectivity but random vertices.

To enable semi-discretization of the governing equations, we model random geometries by the stochas-
tic mesh representation (K, V (θ)), where K is a simplicial complex representing the connectivity of the
vertices/edges/faces and V (θ) = {v1(θ), . . . , vm(θ)} is a set of m vertex positions defining the shape
of the mesh in R3. In other words, we model random geometries by a mesh with fixed connectivity
but randomly located vertices. This representation is very flexible since it allows for a hybrid mix of
various element-types such as tetrahedra and brick elements to accurately capture complex geometrical
features given a sufficient number of elements. To proceed further, we need to establish a relationship
between the given level set function r(x, θ) and the statistics of the vertices V (θ). We shall show that a
PDE-based or a radial basis function formalism [5] can be readily adopted to achieve this goal.

To illustrate one possible approach motivated by elasticity theory, consider a mesh of the nominal
domain represented by the pair (K, V (〈θ〉)) with m vertices. Our approach is based on the idea that
geometric uncertainties can be modeled by a prescribed surface displacement field and the nominal
domain can be thought of as an virtual elastic medium that deforms in response to it. This formalism
enables the mesh vertices V (θ) to be readily computed in a PC basis via the solution of a deterministic
PDE (with Navier elasticity operator) subject to random (displacement) boundary conditions specified
in accordance with the level set function r(x, θ).

Given the mesh connectivity information K and a PC representation of the vertices V (θ), the original
governing equations can be discretized in space to arrive at a system of random algebraic equations.
In the case of finite element spatial discretization, this step will involve the computation of integrals
over elements whose vertices are randomly distributed. The integrals that arise can be written in the
general form

∫
De(θ)

g(x;ω)dx, where De(θ) denotes an element (e.g., tetrahedra) whose vertices are
represented in a PC basis. We shall show how such integrals can be efficiently evaluated in a PC basis
which in turn leads to PC expansions of the element-level coefficient matrices.

Assembly of the element matrices followed by application of boundary conditions result in a linear
random algebraic system of equations of the form A(θ)x(θ) = b(θ), where A(θ) and b(θ) are repre-
sented in a PC basis. These equations can be readily solved using PC projection or stochastic Krylov
methods for x(θ). We shall show that given the solution process x(θ) and the mesh vertices V (θ) in a
PC basis, it becomes possible to efficiently compute various statistics of the solution process u(x;ω) in
the post-processing stage.
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