
8th. World Congress on Computational Mechanics (WCCM8)
5th European Congress on Computational Methods in Applied Sciences and Engineeering (ECCOMAS 2008)

June 30 –July 4, 2008
Venice, Italy

MPI SIMULATION OF DYNAMICS OF FLAMES

* V. Karlin

University of Central Lancashire
Preston PR1 2HE, United Kingdom

Key Words: HPC performance, Global interprocessor communications, Premixed spherical flames.

ABSTRACT

In this work we investigate effect of the MPI implementations of the cross-processor transposition of
distributed data arrays on efficiency of multidimensional FFT based codes on modern HPC systems.

The code in question simulates dynamics of expansion of premixed spherical flames. The possibility of
a self-induced transition of this type of flames to detonation is the issue of our interest in the applied side
of this research. The governing equation is an asymptotic model of the Sivashinsky type and a spectral
numerical algorithm is used to solve it. As a result the code relies heavily on global communications
implementing interprocessor transposition of the global data array in which the numerical solution to
the problem is stored. This global data interdependence makes interprocessor connectivity of the HPC
system as important as the floating-point power of the processors of which the system is built. Details
of the physical problem and numerical integration algorithm can be found in [1,2] and typical results of
numerical simulations are illustrated in Figure 1.

Initially, the main computational arrayΨk1,k2
of size K × K is distributed betweenNp processors

column-wise,Kp = K/Np columns per processor. At this stage, the one-dimensional FFT can be
effectively applied along the first index of the array, i.e. column-wise. In the next stage, the result-
ing global array should be transposed in order to accomplishthe two-dimensional FFT by applying
the one-dimensional FFT along the second index, i.e. raw-wise. The transposition of the global array
requires cross-processor transmission ofK2(1−N−1

p ) elements ofΨk1,k2
and is the most communica-

tion resource-demanding segment of the code. Combined use of the FFT routine requiresO(K2 log2 K)
floating-point operations per time step making it the most crucial arithmetic resource consumer.

There are two straightforward strategies of implementing array transposition in MPI. First, the
MPI_GATHERV routine can be called by every processor in order to fetch missing(Np − 1)KpK/Np

elements ofΨk1,k2
and form its raw-wise representation. Alternatively, theMPI_ALLTOALL routine

can be applied to properly reshaped column-wise sub-arraysof Ψk1,k2
. The reshaping is needed be-

cause theMPI_ALLTOALL routine requires the data destined for a particular processor to be stored in
RAM continuously. Upon the transmission, the newly assembled sub-arrays should be reshaped back,
now in the raw-wise manner, in order to apply the one-dimensional FFT along the second index. The
sub-array reshaping trebles required memory, but allows itto use the maximum available communi-
cation bandwidth. As RAM is usually less critical to the problem in question than the interprocessor
communications efficiency, the latter approach looks advantageous on HPC’s with broader bandwidths.

http://www.uclan.ac.uk/facs/destech/builtenv/vkarlin


Figure 1: Evolution of half of a spherical flame (top) and of its central region (bottom).

The Fortran-90/MPI code underwent some basic optimizationduring porting on a particular HPC sys-
tem. The NEC SX-8 required the largest optimization effort,though the pay off was the most ample
too. Such basically optimized clones of the code were run on aset of HPC’s with varying numbers of
processors and solution array sizes.

All tested HPC systems favour the transposition based on theMPI_ALLTOALL routine, though the SGI
Altix is faster with it just slightly and for relatively small arrays only. On average, our code runs on the
SX-8 about 20 times faster than on the Altix. Further, it was found that the appropriately optimized code
is perfectly scalable on the SX-8 in spite of its global all-to-all communications. In contrast, efficiency
of the code drops rather rapidly on the Altix as the number of processors and/or size of the transposable
array is increased. Profiling shows that further improvement of the code performance on all tested
systems is impeded by theMPI_ALLTOALL routine and to a lesser degree by the FFT procedures.

Results of comparison of performances of our particular code on a set of HPC’s should not be inter-
preted as the overall superiority of one of those HPC’s over others.

ACKNOWLEDGEMENTS

This work was carried out under the HPC-EUROPA project (RII3-CT-2003-506079), with the support
of the European Community - Research Infrastructure Actionunder the FP6 “Structuring the Euro-
pean Research Area” Programme. Support from the UK Consortium On Computational Combustion
For Engineering Applications (COCCFEA) under the EPSRC grant No. EP/D080223/1 and from the
HPCF-UCLan at the University of Central Lancashire is also appreciated.

REFERENCES

[1] V. Karlin and G. Sivashinsky.Combust. Theory Model., Vol. 10, 625–637, 2006.

[2] V. Karlin and G. Sivashinsky.Proc. Combust. Inst., Vol. 31, 1023–1030, 2007.

http://www.hpc-europa.org
http://www.COCCFEA.ac.uk
http://hpcf.uclan.ac.uk

