Efficient Finite Element Solvers for p-Laplacian Equation

\author{

* E. Senger ${ }^{1}$ and A. F. D. Loula ${ }^{2}$
 ${ }^{1}$ Universidade Federal do Amapá
Rod. Juscelino Kubitschek, S/N, Macapá, AP - Brasil
 erasmo@lncc.br
 ${ }^{2}$ Laboratório Nacional de Computação Científica
 Av. Getúlio Vargas 333, Petrópolis, RJ - Brasil
 aloc@lncc.br
}

Key Words: Iterative Methods, p-laplacian, Finite Element, Newton's Method, Helmholtz Decomposition.
ABSTRACT
Let Ω be a bounded open subset of R^{2} with a smooth boundary $\Gamma=\partial \Omega$. We will deal with finite element approximations of the following problem:

$$
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=f \text { in } \Omega \quad \text { and } u=0 \text { on } \partial \Gamma,
$$

with $f \in L^{2}(\Omega), 1<p<\infty$. The above nonlinear operator is known as the p -Laplacian and occurs in many mathematical models associated with glacial processes, image processing, nonlinear diffusions, filtration, creeping flows in solids and quasi-Newtonian flows in general. See [1-6] and references therein.

Constructing finite element approximation for this problem presents no particular difficulty. The main issue is solving the resulting nonlinear algebraic system for large values of the power p, that is $p \gg 2$, or for values of p close to one. Before introducing the finite element approximation we observe that the above p-Laplacian problem is equivalent to the minimization problem: Find $u \in W_{0}^{1, p}(\Omega)$ such that $J(u) \leq J(v)$ for all $v \in W_{0}^{1, p}(\Omega)$, with

$$
J(v)=\frac{1}{p} \int_{\Omega}|\nabla v|^{p} d \Omega-\int_{\Omega} f v d \Omega,
$$

or to the following weak formulation: Find $u \in W_{0}^{1, p}(\Omega)$ such that

$$
\left(|\nabla u|^{p-2} \nabla u, \nabla v\right)=(f, v) \quad \forall v \in W_{0}^{1, p}(\Omega)
$$

with (\cdot, \cdot) denoting the duality product. Based on this weak form we construct finite element approximations on classical C^{0} Lagrangian finite spaces $V_{h} \subset H_{0}^{1}(\Omega)$ leading to the finite dimension nonlinear problem: Find $u_{h} \in V_{h}$ such that

$$
\left(\left|\nabla u_{h}\right|^{p-2} \nabla u_{h}, \nabla v_{h}\right)=\left(f, v_{h}\right) \quad \forall v_{h} \in V_{h} .
$$

To solve this nonlinear system efficiently, iterative solvers have been proposed as, for example, the hybrid conjugate gradient method with weighted preconditioner for the p-Laplacian [1], multigrid algorithms [2] or penalization techniques [3]. In this work we propose very simple iterative algorithms based on a quasi Newton method with relaxation which works very efficiently for very large values of p as well as p close to one. Alternatively, we develop an even simpler algorithm based on the following
constrained minimization problem: Find $\sigma \in L_{f}^{q}(\Omega)=\left\{\tau \in\left[L^{q}(\Omega)\right]^{2},-\operatorname{div} \tau=f\right.$ a.e. in $\left.\Omega\right\}$ such that $G(\sigma) \leq G(\tau)$ for all $\tau \in\left[L_{f}^{q}(\Omega)\right]^{2}, q=\frac{p}{p-1}$, with

$$
G(\tau)=\frac{1}{p} \int_{\Omega}|\tau|^{p} d \Omega
$$

This constrained minimization problem is equivalent to the saddle-point problem of the Lagrangian

$$
L(\tau, v)=G(\tau)+(\operatorname{div} \tau+f, v)
$$

which gives rise to the following mixed formulation: Find $\sigma \in\left[L^{q}(\Omega)\right]^{2}$ and $u \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{gathered}
\left(|\sigma|^{q-2} \sigma, \tau\right)=(\nabla u, \tau) \quad \forall \tau \in\left[L^{q}(\Omega)\right]^{2} \\
(\sigma, \nabla v)=(f, v) \quad \forall v \in W_{0}^{1, q}(\Omega)
\end{gathered}
$$

Using the Helmholtz decomposition

$$
\sigma=\nabla \phi+\operatorname{curl} \psi
$$

in which ϕ and ψ are scalar fields in $W_{0}^{1, q}(\Omega)$ and $W^{1, q}(\Omega) / \mathrm{R}$, respectively, and considering the first equation of the above mixed formulation in the inverse form

$$
(\sigma, \tau)=\left(|\nabla u|^{p-2}, \tau\right) \quad \forall \tau \in\left[W^{q}(\Omega)\right]^{2}
$$

we obtain the following system of equations

$$
\begin{gathered}
(\nabla \phi, \nabla w)=(f, w) \quad \forall w \in W_{0}^{1, q}(\Omega) \\
(\nabla u, \nabla v)=\left(|\nabla \phi+\mathbf{\operatorname { c u r l }} \psi|^{q-2}(\nabla \phi+\mathbf{\operatorname { c u r l }} \psi), \nabla v\right) \quad \forall v \in W_{0}^{1, q}(\Omega), \\
(\operatorname{curl} \psi, \operatorname{curl} \eta)=\left(|\nabla u|^{p-2} \nabla u, \operatorname{curl} \eta\right) \quad \forall \eta \in W^{1, q}(\Omega)
\end{gathered}
$$

Note that ϕ is obtained solving a linear problem. The system in ψ and u is solved using the algorithm:

$$
\begin{gathered}
\left.\left(\nabla u^{n+1}, \nabla v\right)=\zeta_{n}\left(\nabla u^{n}, \nabla v\right)+\left(1-\zeta_{n}\right)\left|\nabla \phi+\operatorname{curl} \psi^{n}\right|^{q-2}\left(\nabla \phi+\operatorname{curl} \psi^{n}\right), \nabla v\right) \quad \forall v \in W_{0}^{1, q}(\Omega) \\
\quad\left(\operatorname{curl} \psi^{n+1}, \operatorname{curl} \eta\right)=\rho_{n}\left(\operatorname{curl} \psi^{n}, \operatorname{curl} \eta\right)+\rho_{n}\left(\left|\nabla u^{n+1}\right|^{p-2} \nabla u^{n+1}, \operatorname{curl} \eta\right) \quad \forall \eta \in W^{1, q}(\Omega)
\end{gathered}
$$

with $0<\zeta_{n}<1$ and $0<\rho_{n}<1$. With appropriate choice of the relaxation parameters ζ_{n} and ρ_{n} can handle efficiently problems with $p \gg 2$ or p close to one.

REFERENCES

[1] G. Zhou, Y. Huang and C. Feng. "Preconditioned hybrid conjugate gradient algorithm for P-Laplacian". International Journal of Numerical Analysis and Modeling, Vol. 2, 123-130, 2005.
[2] Bermejo R. and Infante, J., "A multigrid algorithm for the p-Laplacian", SIAM, J. Sci. Comput., Vol. 21, 1774-1789,2000.
[3] R. Glowinski and A. Marrocco, "Sur l'approximation par éléments Finis d'ordre un, et la résolution, par pénalisation-dualité, d'une classe de problèmes de Dirichlet non linéaires", Journal of Math. anal. Appl. RAIRO Anal. Num. Vol 2, 41-64, 1975.
[4] R. Glowinski and J. Rappaz, "Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology", Math. Model. Numer. Anal. Vol. 37, 1, 175-186, 2003.
[5] M. Picasso, J. Rappaz, A. Reist, M. Funk and H. Blatter, "Numerical simulation of the motion of a two dimensional glacier", Int. J. Numer. Methods Eng., Vol. 60, 995-1009, 2004.
[6] A. F. D. Loula and J. Zhu, "Finite Element Analysis of a Coupled Nonlinear System", Computational an Applied Mathemathics, Vol. 20, 3, 321-339, 2001.

