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ABSTRACT

Computing plastic strain is a crucial issue in finite element methods. This problem is also known as
closest point projection. The radial return used for circular models reduces the computations to literal
expressions (Krieg and Key, 1976). But in geomechanics, the deviatoric shape of yield functions is
generally non circular, like Lade (1977) or Matsuoka-Nakai (1974). Return mapping algorithm becomes
cumbersome and time consuming, and many researchs are done to increase its efficiency.

Works that will be presented rather focus on a geometric based methods. It will be demonstrated that the
problem of closest point projection of the trial stress on the yield surface is equivalent to a geometric
one. Whereas this property is intuitive, the tools ensuring a straightforward equivalence between the
two problems were to be developed.

We can use the Lode angle θ, to define polar coordinates in the deviatoric plane. Those properties of the
deviatoric plane were used by Zienkiewicz and Pande (1975) who reduced a yield surface to its polar
expression, and studied the shape function gp (θ):
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But Zienkiewicz and Pande focused on the properties of the yield surface, not the closest point pro-
jection. For the latter problem, one lacks a proper local base : as the deviatoric stress defines a radial
tensor, but is not enough for non circular criteria. So, we introduce the orthoradial tensor v, in order to
define an orthogonal base on the stress space :
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Then we can scale the trial stress the same way Zienkiewicz and Pande normalized the criterion, to de-
fine the geometric problem associated to the closest point projection (figure 1). The geometric problem
is independent from the mechanical one, and can be solved with trigonometric and geometric laws.
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Figure 1: Equivalence between a) physical problem b) geometric

ρmax reals(thousands) Ko Mo
6 101 786 0,79

12 211 1644 1,61

Table 1: Size of the numerical abacuses.

As the geometric problem is a bounded, it is easyto realize numerical abacuses: for different values of
(ρ, θ∗), solutions are computed and solutions are saved. The storage size is ridiculous(table 1), and the
abacuses can be loaded by a FEM code, reducing computing costs. One can use explicit shape function
gp (θ) like William and Warnke (1975) or Bigoni and Piccolroaz (2004), otherwise implicit form can be
deduced from criteria. Bigoni and Piccolroaz function can be used as an explicit shape function of the
Matsuoka-Nakai criterion corresponding with a Coulomb (Maïolino, 2005).

The method was implemented, taking into account dilatancy and hardening, to simulate excavations in
clay rocks, using a smooth version of the Hœk-Brown criterion (Maïolino, 2006).
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