ANALYSIS OF DAMAGED VIBRATING BEAMS BY MEANS OF DISTRIBUTIONS: DIRECT AND INVERSE PROBLEMS

S. Caddemi¹, *I. Calio² and S. Liseni³

¹ Dip.to di Ingegneria Civile	² Dip.to di Ingegneria Civile	³ Dip.to di Ingegneria Civile
ed Ambientale	ed Ambientale	ed Ambientale
Università di Catania	Università di Catania	Università di Catania
Viale Andrea Doria 6, 95125	Viale Andrea Doria 6, 95125	Viale Andrea Doria 6, 95125
Catania, ITALY	Catania, ITALY	Catania, ITALY
scaddemi@dica.unict.it	icalio@dica.unict.it	liseni@dica.unict.it

Key Words: *Free vibrations, Straight beams, Concentrated damage, Identification, Inverse problem, Distributions, Generalised functions.*

ABSTRACT

The problem of damage identification by dynamic tests is of extreme importance and have been widely addressed in the literature [1]. Here a novel procedure for the identification of multiple concentrated damages on a straight beam on the basis of its eigen-mode explicit expressions is presented. The proposed method is a natural extension of the procedure presented in the companion paper [2].

By making use of the generalised function theory, a new explicit expression of the eigen-modes of a multi-cracked beam, is given as follows:

$$\phi_k(x) = c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x) + c_4 f_4(x) \quad , \tag{1}$$

$$f_{1}(x) = \sin(\beta_{k}x) + \sum_{i=1}^{n_{\gamma}} \lambda_{i} \mu_{i} H(x - x_{i}) U(x - x_{i}); f_{2}(x) = \cos(\beta_{k}x) + \sum_{i=1}^{n_{\gamma}} \lambda_{i} \nu_{i} H(x - x_{i}) U(x - x_{i})$$

$$f_{3}(x) = \sinh(\beta_{k}x) + \sum_{i=1}^{n_{\gamma}} \lambda_{i} \xi_{i} H(x - x_{i}) U(x - x_{i}); f_{4}(x) = \cosh(\beta_{k}x) + \sum_{i=1}^{n_{\gamma}} \lambda_{i} \eta_{i} H(x - x_{i}) U(x - x_{i})$$
(2)

in which $U(x - x_i)$ are unit step (Heaviside) functions, β_k is the frequency parameter associated to the *k*-th natural frequency ω_k of the beam damaged at the x_i ($i = 1, 2..., n_\lambda$) positions, and $\mu_i, \nu_i, \xi_i, \eta_i$ are defined as follows:

$$\mu_{i} = \frac{\beta_{k}}{2} \left[-\sin(\beta_{k}x_{i}) + \sum_{j=1}^{i-1} \lambda_{j}\mu_{j}\hat{H}(x_{i} - x_{j}) \right]; V_{i} = \frac{\beta_{k}}{2} \left[-\cos(\beta_{k}x_{i}) + \sum_{j=1}^{i-1} \lambda_{j}\nu_{j}\hat{H}(x_{i} - x_{j}) \right]$$

$$\xi_{i} = \frac{\beta_{k}}{2} \left[\sinh(\beta_{k}x_{i}) + \sum_{j=1}^{i-1} \lambda_{j}\xi_{j}\hat{H}(x_{i} - x_{j}) \right]; \eta_{i} = \frac{\beta_{k}}{2} \left[\cosh(\beta_{k}x_{j}) + \sum_{j=1}^{i-1} \lambda_{j}\eta_{j}\hat{H}(x_{i} - x_{j}) \right]$$
(3)

where

with

$$H(x-x_i) = \sin[\beta_k(x-x_i)] + \sinh[\beta_k(x-x_i)]$$

$$\hat{H}(x_i - x_j) = -\sin[\beta_k(x_i - x_j)] + \sinh[\beta_k(x_i - x_j)]$$
(4)

and λ_i are damage parameters that can be associated to the crack depths. Eq.(1) shows that, except for the integration constants c_1, c_2, c_3, c_4 the generic eigen-mode at abscissa *x* depends only on the damages at positions $x_i < x$.

The particular analytical structure of the solution leads to an identification procedure which provides an explicit expression of the damage intensities as a function of the measured modes and frequencies of the beam.

As an example, the case of the beam free at its both ends depends on two constants only $c_1 = c_3 = C_k$, $c_2 = c_4 = \mathcal{G}_k C_k$. If a non destructive dynamic test is conducted on a multidamaged beam, the first natural frequency ω_1^{ex} and the first eigen-mode $\phi_1^{ex}(x_i)$ can be evaluated at the cracked cross-sections x_i . In this case the latter values can be equated to the theoretical expressions of the first eigen-mode $\phi_1^{th}(x_i)$ providing the following system of equations:

$$\phi_1^{ex}(x_0) = \phi_1^{th}(x_0) \quad , \quad \phi_1^{ex}(x_i) = \phi_1^{th}(x_i) \,. \tag{6}$$

Employing the first two measurements of the eigen-mode $\phi_1^{ex}(x_0)$, $\phi_1^{ex}(x_1)$ under the assumption that $x_0 < x_1$; in this case the system of Eqs.(6) leads to the evaluation of the corresponding integration constants \mathcal{P}_1, C_1 as follows:

$$\mathcal{G}_{1} = \frac{\phi_{1}^{ex}(x_{m0})[\sin(\beta_{1}x_{01}) + \sinh(\beta_{1}x_{01})] - \phi_{1}^{ex}(x_{m1})[\sin(\beta_{1}x_{0}) + \sinh(\beta_{1}x_{0})]}{\phi_{1}^{ex}(x_{m1})[\cos(\beta_{1}x_{0}) + \cosh(\beta_{1}x_{0})] - \phi_{1}^{ex}(x_{m0})[\cos(\beta_{1}x_{01}) + \cosh(\beta_{1}x_{01})]} \\
C_{1} = \frac{\phi_{1}^{ex}(x_{m0})}{[\sin(\beta_{1}x_{m0}) + \sinh(\beta_{1}x_{m0})] + \mathcal{G}_{1}[\cos(\beta_{1}x_{m0}) + \cosh(\beta_{1}x_{m0})]} .$$
(5)

The further measurement $\phi_1^{th}(x_2)$ leads to an expression in which the only unknown is the first damage present at x_1 . Once the first damage has been identified, the second damage intensity λ_2 can be obtained by means of the further measurement $\phi_1^{ex}(x_3)$ at x_3 and so on. The intensity λ_i of the generic damage can be written explicitly as follows:

$$\begin{aligned} \lambda_{i} &= \frac{[\phi_{1}^{ex}(x_{i+1})/C_{1}] - [(\sin(\beta_{1}x_{i+1}) + \sinh(\beta_{1}x_{i+1})) + \vartheta_{1}(\cos(\beta_{1}x_{i+1}) + \cosh(\beta_{1}x_{i+1}))]}{[(\mu_{j} + \xi_{j}) + \vartheta_{1}(\nu_{j} + \eta_{j})][\sin(\beta_{1}(x_{i+1} - x_{i})) + \sinh(\beta_{1}(x_{i+1} - x_{i}))]} + \\ &- \frac{\sum_{j=1}^{i-1} \lambda_{j}[(\mu_{j} + \xi_{j}) + \vartheta_{1}(\nu_{j} + \eta_{j})][\sin(\beta_{1}(x_{i+1} - x_{j})) + \sinh(\beta_{1}(x_{i+1} - x_{j}))]}{[(\mu_{j} + \xi_{j}) + \vartheta_{1}(\nu_{j} + \eta_{j})][\sin(\beta_{1}(x_{i+1} - x_{i})) + \sinh(\beta_{1}(x_{i+1} - x_{i}))]} \end{aligned}$$
(7)

If there is no crack at the cross-section x_i , the identified damage parameter λ_i indicates the absence of damage. In the case the measurement positions are not coincident with the damage locations x_i , the measurements of the second frequency and the corresponding eigen-mode provide the sufficient additional data for the evaluation of intensity and position of a damage placed between two successive measurements.

REFERENCES

- [1] A.D. Dimarogonas, "Vibration of cracked structure: a state of the art review", *Eng. Fract. Mech.*, Vol. **55**, pp. 831-857, (1996).
- [2] S.Caddemi, I.Caliò and S. Liseni, "A procedure for the identification of concentrated damages on beams by static tests", 8th. World Congress on Computational Mechanics (WCCM8); 5th. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008), Venice, Italy, June 30 – July 5, (2008).