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ABSTRACT 

The problem of damage identification by dynamic tests is of extreme importance and 
have been widely addressed in the literature [1]. Here a novel procedure for the 
identification of multiple concentrated damages on a straight beam on the basis of its 
eigen-mode explicit expressions is presented. The proposed method is a natural 
extension of the procedure presented in the companion paper [2].  
By making use of the generalised function theory, a new explicit expression of the 
eigen-modes of a multi-cracked beam, is given as follows: 

1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( )k x c f x c f x c f x c f xφ = + + +     , (1) 

with    1 1

1 1

1 2

3 4

sin( ) ( ) ( ) ; cos( ) ( ) ( )

sinh( ) ( ) ( ) ; cosh( ) ( ) ( )

( ) ( )

( ) ( )

n n

k i i i i k i i i i
i i

n n

k i i i i k i i i i
i i

x H x x U x x x H x x U x x

x H x x U x x x H x x U x x

f x f x

f x f x

γ γ

γ γ

β λ μ β λν

β λξ β λη

= =

= =

= + − − = + − −

= + − − = + − −

∑ ∑

∑ ∑
 (2) 

in which ( )iU x x−  are unit step (Heaviside) functions, kβ  is the frequency parameter 
associated to the k-th natural frequency kω  of the beam damaged at the ix ( 1,2...,i nλ= ) 
positions, and , , ,i i i iμ ν ξ η  are defined as follows: 
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and iλ  are damage parameters that can be associated to the crack depths. Eq.(1) shows 
that, except for the integration constants 1 2 3 4, , ,c c c c  the generic eigen-mode at abscissa x 
depends only on the damages at positions xi < x.  



 

The particular analytical structure of the solution leads to an identification procedure 
which provides an explicit expression of the damage intensities as a function of the 
measured modes and frequencies of the beam.  
As an example, the case of the beam free at its both ends depends on two constants only 

1 3 2 4,k k kc c C c c Cϑ= = = = . If a non destructive dynamic test is conducted on a multi-
damaged beam, the first natural frequency 1

exω  and the first eigen-mode 1 ( )i
ex xφ  can be 

evaluated at the cracked cross-sections xi. In this case the latter values can be equated to 
the theoretical expressions of the first eigen-mode 1 ( )i

th xφ  providing the following 
system of equations:  
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Employing the first two measurements of the eigen-mode 01 ( )ex xφ , 11 ( )ex xφ  under the 
assumption that 0 1x x< ; in this case the system of Eqs.(6) leads to the evaluation of the 
corresponding integration constants 1 1,Cϑ  as follows: 
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The further measurement 21 ( )th xφ  leads to an expression in which the only unknown is 
the first damage present at 1x . Once the first damage has been identified, the second 
damage intensity 2λ  can be obtained by means of the further measurement 31 ( )ex xφ  at 

3x  and so on. The intensity iλ  of the generic damage can be written explicitly as 
follows: 
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If there is no crack at the cross-section ix , the identified damage parameter iλ  indicates 
the absence of damage. In the case the measurement positions are not coincident with 
the damage locations ix , the measurements of the second frequency and the 
corresponding eigen-mode provide the sufficient additional data for the evaluation of 
intensity and position of a damage placed between two successive measurements.  
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