A TECHNIQUE FOR RECOVERY OF EQUILIBRIUM ON STAR PATCHES VIA A PARTITION OF UNITY

*José P. M. Almeida¹ and Edward A.W. Maunder²

 ¹ IST, Technical University of Lisbon Av. Rovisco Pais, 1049-001 Lisboa, Portugal moitinho@civil.ist.utl.pt ² School of Engineering, University of Exeter North Park Road, Exeter, EX4 4QF United Kingdom e.a.w.maunder@exeter.ac.uk

Key Words: Recovery of equilibrium, Star patches, Partition of unity

ABSTRACT

The use of approximate solutions of solid mechanics problems that locally satisfy all equilibrium conditions, paired with the more usual conforming solutions, has become a normal technique in the context of obtaining bounds of the discretisation error, either for global or for local quantities [1,2].

These solutions can be obtained from global equilibrium analyses [3], but it is often argued that their costs are prohibitive. To avoid this penalty some variant of the "Ladevèze-Maunder" equilibration technique [4] can be applied, using patches of elements and the global equilibrium properties of the conforming solution, to obtain, element by element, a solution that is locally equilibrated.

An alternative way to recover equilibrium is based on a partition of unity decomposition of the prescribed loads so that each star patch can be separately analysed subject to its share of the load [5,6].

In this communication we present a variant of this technique whereby each star patch is considered subject to a self-balanced system of loads and homogeneous boundary tractions, producing local problems that are uniquely defined.

We also show how the results derived for global equilibrium models [3] can be used in this context.

REFERENCES

- [1] JPM Almeida, OJBA Pereira, "Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems", *Computer Methods in Applied Mechanics and Engineering*, **195**, 279-296, (2006);
- [2] P Ladevèze P, JP Pelle, *La maîtrise du calcul en mécanique linéaire et non linéaire*, Hermes, Paris, 2001;

- [3] EAW Maunder, JPM Almeida, "The stability of stars of triangular equilibrium plate elements", submitted for publication in *International Journal for Numerical Methods in Engineering*;
- [4] P Ladevèze, EAW Maunder, "A general method for recovering equilibrating element tractions", *Computer Methods in Applied Mechanics and Engineering*, **137**, 211-151, (1996).
- [5] I Babuska, WC Rheinhold, "Error estimates for adaptive finite element computations", *SIAM Journal on Numerical Analysis*, **18**, 736-754 (1978);
- [6] N Parés, P Díez, A Huerta, "Subdomain-based flux-free a posteriori error estimators", *Computer Methods in Applied Mechanics and Engineering*, **195**, 297-323, (2006).