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A C1 finite element for three-dimensional gradient elasticity
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ABSTRACT

Gradient elasticity, as introduced by Mindlin [1], assumes the dependence of the potential energy den-
sity on both first and second gradients of the displacement field. If a usual finite element formulation
is used, where only the displacement field is discretized, the presence of second gradients of displace-
ments leads to the requirement for a smooth, C1 interpolation of the displacements instead of just a
continuous, C0 interpolation. Some two-dimensional C1 elements have been developed for use in plate
bending problems and have been succesfully applied in problems of gradient elasticity and elastoplas-
ticity [2,3], but no three-dimensional elements were encountered in the literature.

In this work we present a newly-developed three-dimensional C1 element based on the two-dimensional
Hermite isoparametric element proposed by Petera and Pittman [4]. The proposed element is an isopara-
metric 8-node hexahedron. The degrees of freedom at each node are the values of the displacement, its
first derivatives, its mixed second derivatives and its fully mixed third derivative. There are therefore 64
DOFs for every displacement component, allowing for a full cubic polynomial interpolation. To pass
from the element’s parametric space to the cartesian space, we need the derivatives of the cartesian co-
ordinates with respect to the parametric ones. These are obtained through a pre-processing smoothing
procedure initially introduced in [4] and applied here in a modified form.

The numerical behaviour of the element has been tested extensively. The element passes successfully the
single-element and patch tests, while its stiffness matrix has six zero eigenvalues as expected. Additional
benchmark tests were used, where the numerical solution was compared to the one that was derived
analytically. The results for the shearing and torsion of a hollow cylinder show a good convergence
rate as the mesh density increases (see figure 1). Additionally it is seen that just a few elements are
enough to obtain an adequate approximation of the analytical solution. This is a good indication that
the increased accuracy provided by the cubic interpolation counterbalances in practical use the increased
computational cost per element introduced by the larger number of DOFs.

Alternative formulations that avoid the C1 requirement have been proposed, usually based on a mixed
formulation with simultaneous discretization of both the displacement and the strain fields (see for
example [5,6]). Since these have generally been used for two-dimensional elements, it is not possible
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Figure 1: Results for hollow cylinder shearing benchmark, showing the convergence rate for different
mesh densities.

to provide a direct comparison of the numerical behaviour for specific problems. An overview is given
however, at a theoretical level, of the relative merits of the proposed formulation compared to the threee-
dimensional extension of other formulations available in the literature. One advantage of the proposed
formulation is that all the DOFs are used to interpolate the requested field, while in mixed formulations
two fields are discretized but only one is actually used.
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