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ABSTRACT

In earthquake engineering the design of energy dissipating devices play an important role to ensure
structural safety and integrity. Such devices one one hand must allow for a sufficiently high level of
energy dissipation in order to reduce structural damage, and on the other hand must provide enough
stiffness in order to prevent excessive permanent deformations or offsets. This leads to trade-off con-
siderations which can be dealt with through an optimization process. The ground acceleration process
a(t) is assumed to be represented by an amplitude-modulated white noise process

a(t) = e(t)B(t) (1)

in which e(t) = 4 · [exp(−0.25t) − exp(−0.5t)] is a deterministic modulating function and B(t)
is a stationary random process with given power spectral density SBB(ω). In the numerical exam-
ple, SBB(ω) = const. The structural model is assumed to have two degrees of freedom x1 and
x2. The ground acceleration is transferred to the structure via a friction damping device with a dis-
placement DOF x0 and an internal plastic displacement variable z. The damping device has a mass
m0, an initial stiffness k00 + k0, a plastic limit force s and a plastic (post-yielding) stiffness k0.
The structure is represented by two masses m1 and m2 as well as two elastic springs k1 and k2.

Figure 1: Structural model with two degrees of freedom

The system state is described completely
by a state vector y with 7 components:

y = [z, x0, ẋ0, x1, ẋ1, x2, ẋ2]T (2)

The equation for the derivative ż of the
plastic variable depends on the state of
the system, primarily the magnitude of the
force F0 = k0(x0 − z) in der spring k0. If
the absolute value of this force is smaller
than the friction limit s, then the friction
device responds elastically to infinitesimal state changes. This means that the friction element is blocked
and ż = 0. If the friction limit is reached, i.e. F0 = s, then the increment of z depends on the sign of



ẋ0. If ẋ0 < 0, the friction device returns to the elastic state and t ż = 0. Otherwise there is increased
plastic deformation with ż = ẋ0. For F0 = −s, ẋ0 > 0 implies return to elastic state (ż = ẋ0) and for
ẋ0 < 0 there is increased friction slip with ż = ẋ0.

ẏ1 = ż


0 |k0(x0 − z| < s

0 [k0(x0 − z) = s] ∧ [ẋ0 < 0]
0 [k0(x0 − z) = −s] ∧ [ẋ0 > 0]
ẋ0 else

(3)

For the remaining state variables we have the standard equations of motion in first-order form:

ẏ2 = ẋ0 = y3

ẏ3 = ẍ0 = −a(t)− [(k00 + k0 + k1)y2 − k0y1 − k1y4 + c1y3] /m0

ẏ4 = ẋ1 = y5

ẏ5 = ẍ1 = −a(t)− [(k1 + k2)y4 − k1y2 − k2y6 + c2y5] /m1

ẏ6 = ẋ2 = y7

ẏ7 = ẍ2 = −a(t)− [k2y6 − k2y4 + c3y7] /m2

(4)

Here c1, c2, c3 are mass-proportional damping factors.

Figure 2: First passage safety index vs. friction force s

For a fixed time step ∆t this system of dif-
ferential equations with given initial val-
ues for y can be integrated explicitly e.g.
by the Euler method. Using this numerical
solution scheme, the first passage proba-
bilities of various response quantities can
be easily approximated using the First-
Order Reliability Method (for enhanced
accuracy in conjunction with the Impor-
tance Sampling Method, a detailed dis-
cussion is given in [1]). The parameter s
of the friction device is then used as de-
sign parameters in an optimization pro-
cess attempting to minimize the first pas-
sage probabilities (expressed by the cor-
responding safety index β) of various re-
sponse quantities. For the case of the first
passage probability of the relative dis-
placement ∆x1 = x1− x0 the dependency of β on the friction force s is shown in Fig. 2. It is seen that
there is a clearly pronounced optimal value around s = 40 kN.

References

[1] M. Macke and C. Bucher. Importance sampling for randomly excited dynamical systems. Journal
of Sound and Vibration, (268):269–290, 2003.


