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ABSTRACT

Numerical approximation of time-harmonic acoustic, elastic and electromagnetic wave problems gov-
erned by the Helmholtz equation is particularly challenging as reported in a vast literature [1-12]. The
oscillatory behavior of the exact solution and the quality of the numerical approximation depend on
the wave number k. To approximate Helmholtz equation with acceptable accuracy the resolution of the
mesh should be adjusted to the wave number according to a rule of thumb [1], which prescribes a min-
imum number of elements per wavelength. Despite of this rule, the performance of the Galerkin finite
element method deteriorates as k increases. This misbehavior, known as pollution of the finite element
solution, can only be avoided after a drastic refinement of the mesh, which normally entails significant
barriers for the numerical analysis of Helmholtz equation at mid and high frequencies.

There exist several attempts to minimize the phase error of finite element approximations to Helmholtz
equation. In one-dimension a Galerkin Least Square (GLS) stabilization, as proposed in [2], can com-
pletely eliminate the phase error, but not in two or three dimensions [5] and [8]. For two dimensions,
stencils with minimal pollution error are constructed in [4] through the Quasi Stabilized Finite Element
Method (QS). Finite element methods based on variational formulations, such as Residual-Based Finite
Element Method (RBFEM) [8] and Discontinuous Finite Element Method at Element Level (DGB)
[10] and [11], have also been developed to minimize the phase error in two dimensions.

The DGB method is a discontinuous Galerkin finite element formulation with discontinuities intro-
duced locally, inside each element. The discontinuous interpolation functions can be viewed as discon-
tinuous bubbles and the corresponding degrees of freedom can be eliminated at element level by static
condensation yielding a global matrix topologically equivalent to those of classical finite element ap-
proximations. The free parameters, related to the weak enforcement of continuity inside each element
are determined explicitly minimizing the pollution effect. For uniform meshes the DGB stencil with
minimal pollution error is identical to QSFEM stencil derived in [4].

In the present work we propose a finite element method for Helmholtz problem in two dimensions based
on a Petrov Galerkin formulation. Nearly optimal polynomial weighting functions with local support



are derived aiming at obtaining finite element solutions close to the best approximation [7,13]. To this
end we consider bubble functions defined not only on the element level but also on macroelement level.
At each node of the mesh, a global basis of the weighting space is obtained adding to the Lagrangian
interpolation function linear combinations of the bubble functions defined on the macroelement adjacent
to this node. A nearly optimal global weighting function, with the same support of the corresponding
test function, is obtained after computing the coefficients of these linear combinations attending some
optimality criteria. This is done numerically through a preprocessing that can be applied to any finite
element mesh. For uniform mesh a quasi optimal interior stencil is obtained with this preprocessing.
The method is naturally applied to non uniform or unstructured meshes.
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