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ABSTRACT

Computational fluids dynamics (CFD) is a fast developing field in science and engineering where the
use of parallel computations is becoming increasingly essential due to the requirement of large memory
size, computer code run time and other factors. In this work,we construct a parallel algorithm, suitable
for distributed memory architectures, of an explicit shock-capturing finite volume method for solving
the two-dimensional shallow water equations. The finite volume method [1] is based on the very popular
approximate Riemann solver of Roe and is extended to second order spatial accuracy by an appropriate
TVD technique [2]. The parallel code is applied to distributed memory architectures using domain de-
composition techniques and we investigate its performanceon a grid computer using the most common
ethernet network of 100Mbps and 1Gbps speed interconnection.

Free-surface flow over a variable bottom topography under the influence of gravity can be modeled by
the nonlinear shallow-water (or Saint-Venant) system of equations. Based on the conservation of mass
and momentum principles the equations are given as

∂q
∂t
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2
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whereΩ = [0, a] × [0, b] andΩ × [0, t] is the space-time domain over which solutions are sought, and
the vector of conserved variables and fluxes are given by
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with u = [u, v]T being the vector velocity field,h(x, y, t) the flow depth (distance from the bottom
to the free surface) andg the gravitational acceleration. The source termR models the effects of the
shape of the bottom topography on the flow. Solving the flow problem on a symmetric multiprocessor
computing environment, the computations must be carried out along all available processors. Ideally,
the workload should be evenly balanced and concurrency maximized so that all of the processors are
kept busy doing useful work as much as possible while at the same time the communication overhead
is kept at a minimum [3]. Therefore, given the serial finite volume code, its parallel framework can



be broadly written as:(1.) Divide the total computational domain into sub-domains.(2.) Assign each
sub-domain as the local domain of a processor.(3.) Let each processor execute the serial code for all
the computational cells lying in its local domain.(4.) Each processor will have to communicate with
its adjacent processors in order to obtain the flow data required for solving the equations on its local
boundary cells, before marching to the next time step.(5.) One of the processors is assigned asmaster
in order, (a) to distribute and collect initial and final dataand (b) make the decision of advancing or not
the solution in the next time level (master-slave communication model).

Performance results for three classical benchmark problems are presented bellow (Fig. 1) across an
eight processor and four node of SUN V240z grid system. The applications were developed using the
Message Passing Interface standard. The Speedup investigation (Fig. 2-3) illustrates the scalability and
efficiency of the resulting implementation. The TVD scheme used requires enough computation to
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Figure 1: Water depth for Problem 1 (left) - 2 (center) and for3 the non-smooth bed topography (right)
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Figure 2: Grid 100Mbps Speedup measurements for Problem 1 (left) - 2 (center) and 3 (right)
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Figure 3: Grid 1Gbps Speedup measurements for Problem 1 (left) - 2 (center) and 3 (right)

provide us with a good ratio between communication and computation. This feature can be directly
exploited for efficient implementations on grid computing systems. All though in these cases the net-
work type connection affects directly the speedup performance and savings in computational time can
be substantial.
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