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de Representación, Universidad de A Coruña.
E. T. S. I. de Caminos, Canales y Puertos,
Campus de Elviña, 15071 A Coruña, Spain.
E-mail: raqueltv@udc.es

Key Words: Shallow waters, Euler equations, modelling, asymptotic analysis.

ABSTRACT

In this work, we study Euler equations in a domain with small depth. With this aim, we introduce a
small adimensional parameter ε related to the depth, and the domain we consider can be defined by
Ωε = {(xε, yε, zε) ∈ R3|(xε, yε) ∈ D, zε ∈ (Hε(xε, yε), sε(tε, xε, yε))} where D is the projection on
the XY plane of Ωε, zε = Hε(xε, yε) is the equation of the bottom of the domain (supposed known),
zε = sε(tε, xε, yε) is the equation of the free surface (unknown) and we define the water depth as
hε(tε, xε, yε) = sε(tε, xε, yε)−Hε(xε, yε). The adimensional parameter ε allows us to state explicitly
that the domain has small depth by supposing that Hε = εH , sε = εs, hε = εh and xε = x, yε = y,
tε = t (that is, xε, yε and tε are independent of ε). In this way, ε can be thought as the quotient between
characteristic depth and diameter of the domain.

Let us consider that flow obeys Euler equations in Ωε and that the external forces acting on the fluid are
those due to gravity and the Coriolis acceleration. The fluid is supposed to be incompressible and the
pressure is the atmospheric at the surface.

Usually, when used asymptotic analysis to analyze fluids, most of authors work in the original domain
(see, for example [3]), or they suppose that the surface is flat (see, for example, [1]). We, however, shall
use the asymptotic technique in the same way as in [2] and related works, that is, we make a change of
variable to a reference domain independent of the parameter ε and time.

Let Ω = D× (0, 1) be the reference domain and let us define the following change of variable, from Ω
to Ωε: tε = t, xε = x, yε = y, zε = ε[H(x, y)+zh(t, x, y)]. Given any function F ε defined on [0, T ]×
Ωε, we can define other function F (ε) on [0, T ] × Ω̄ using the change of variable: F (ε)(t, x, y, z) =
F ε(tε, xε, yε, zε). Now our problem can be written in the reference domain Ω with explicit dependence
on ε.

In order to apply the formal asymptotic method, we assume that the solution to the problem in the refer-
ence domain allows an expansion in powers of ε. We replace this expansion in the equations obtained,
after the change of variable, in Ω and we identify the terms multiplied by the same power of ε. In this
way we arrive at a series of equations that will allow us to determine each term of the expansion. If



we neglect the terms of bigger order in the equations we obtain, we attain the following shallow water
model expressed in terms of the depth averaged velocity, whose order of precision (at least formally) is
O(ε2):
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The formal asymptotic analysis allows us to obtain a shallow water model (1)-(5) that generalizes
the classic shallow water model (1), providing a horizontal velocity with explicit dependence on zε.
Numerical experiments confirm that our model (1)-(5) gives the same precision for all zε (if N is
large enough) than the classic model for the averaged velocity, so we can consider our model as an
improvement of the classical model.
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