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ABSTRACT 

The response of a linearly-elastic perfectly-plastic frame subjected to proportional 
loading, may be obtained with the use of incremental loading steps. If we take an 
increment of the applied loading Δf = (Δγ) ′f  from an initial state, where γ is the 
proportional parameter, we may determine an increment of the moments that develop 
using the force (or mesh) description of statics:  

 fBBpm ′γΔ+=Δ o)(  (1) 

where the first term is due to the indeterminacy of the structure and p is a statical basis. 

These two matrices are established, in an automatic way, using concepts from graph 
theory like a minimum path technique between two nodes of a graph (Spiliopoulos [1]). 

Assuming that plasticity is concentrated at the two ends of each member of the frame, 
the total rotations may be decomposed into an elastic and a plastic part. A rigid plastic 
nonholonomic behaviour may be assumed for the plastic part. Such a behaviour 
(pictured in Fig.1 for a positive plastic rotation) may be expressed through the use of the 
plastic potential ∗y : 
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 Fig.1: Rigid-plastic behaviour                              Fig.2: Numerical strategy 
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Equations (1), (2) together with the compatibility and the static admissibility conditions, 
expressed also through the plastic potential, may be seen as Kuhn-Tucker constraints 
leading to the following quadratic programming problem (QP): 
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 subject to: 

 T T T
pr o( ) ( ) ( )∗ ′≤ − − ΔγN B p m N m N B f  (3a) 

Expression (3a) is the condition of static admissibility at the current load increment, 
with the term prm  being the total moments obtained from the previous increments. *m  
denote the plastic moment capacities of the cross sections both in tension and 
compression, F collects the flexibility matrices of the unassembled members and N is 
an incidence matrix. 

The above QP program is a parametric one, since, to find the unknowns p, the 
papameter Δγ should also be supplied. This papameter may be estimated requiring that 
each load increment ends with the formation of a new plastic hinge. Maier [2] was the 
first to present the above program in the form of an equivalent parametric linear 
complementarity problem (PLCP). Smith [3] has suggested the solution of this problem 
using the Wolfe-Markowitz algorithm. The PLCP problem contains both static and 
kinematic variables and its solution requires operations on both of these sets. 
On the contrary, the QP program contains only static variables and a solution of this 
program would be preferable. In the present work a novel numerical strategy to solve 
directly the QP program is suggested.  

The main idea of this strategy is to disassossiate the parameter Δγ from the solution of 
the QP. This may be accomplished if we find a direction on which the sought solution 
lies. This direction may be determined by replacing Δγ with a given relatively small 
number ρ and then solving this QP program using any existing algorithm (e.g. [4]). In 
this way, a set of statically admissible bending moments and a set of elastic/plastic 
rotations may be established. The real current Δγ could then be evaluated as the smallest 
value these bending moments should be multiplied with, so that a new plastic hinge 
forms. Then, in order to get the true solution of the current step, we merely multiply the 
above mentioned sets by this factor since a step between the formation of two 
successive plastic hinges is elastic. A pictorial representation of this strategy for two 
incremental steps on a force-displacement diagram may be seen in Fig.2. 
Various examples of application will be presented. 
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