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ABSTRACT 

This work is focused on addressing large scale design optimization problems (that may 
contain hundreds of design variables) by the use of a mid-range approximations [1,2] 
that has been originated in early 1980s and undergoes continuous development [3-7]. 
Such a technique replaces the original optimization problem by a succession of simpler 
mathematical programming problems. The functions in each iteration present mid-range 
approximations (an adaptive metamodel) of  the original functions. These metamodels 
are computationally inexpensive and noise-free. The solution of an individual sub-
problem becomes the starting point for the next step, the move limits (that define a 
current trust region) are changed and the optimization is repeated iteratively until the 
optimum is reached. Each metamodel is defined as a function of design variables as 
well as a number of tuning parameters. The latter are determined by the weighted least 
squares surface fitting using the original function values (and their derivatives, when 
available) at several points of the design variable space. This selection of points is 
treated as a design of numerical experiments. Some of the design points are generated in 
a current iteration, and the rest is taken from the pool of points considered in the 
previous iterations. 

The procedure described above utilizes intrinsically linear functions [8]. Such functions 
are nonlinear, but they can be led to linear ones by simple transformations. These 
functions include a multiplicative function, an inverse function, a power function, etc.  

A new approach is being investigated in the attempt to produce new high quality 
approximations valid for a larger range of design variables that is based on the use of 
rational approximations that are a particular class of functions nonlinear in unknown 
coefficients. Due to rapidly growing number of coefficients for large number of design 
variables (that is the main objective of this work), the function structure has to be 
limited to low degree polynomials (e.g. linear) and small datasets.  Results of extensive 
numerical testing show that, although the linear form of the rational approximation 
describes the global behaviour of a highly nonlinear response rather poorly, such 



 

approximations proved useful in the mid-range approximation framework. 

In the present work the developed technique has been applied to the shape optimization 
of an existing transonic compressor rotor blades (NASA rotor 37) treated as a 
benchmark case.  Simulations were performed using the CFD software [9].  
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