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ABSTRACT  

The first principle approach is mostly used nowadays to evaluate physical and mechani-
cal properties of solids. In fact, the macroscopic behaviour depends on the type of 
binding through the electronic density, derived from the quantum mechanics Schrödin-
ger equation. It also allows designing new materials with cutting edge performances. 

When willing to solve the Schrödinger equation for a global system of Ne electrons, one 
faces a problem of partial differential equations in ℝ3Ne and needs to approximate the 
form of the wave function ψ (or of the equation itself) one looks for. Among them is the 
density functional theory (DFT) [1]. But it includes a whole set of approximations, from 
the most basic one known as LDA (local density approximation) where the exchange 
correlation energy Exc is written as a functional of the electron density ρ, to more 
elaborated ones such as general gradient approximation (GGA) and other meta-GGA 
where Exc is a functional of ρ, and also of its gradient, its laplacian… This sequence of 
more elaborated approximations, referred as “Jacob’s ladder”, shows that soon one wi-
shed to decrease the error due to the approximation as its complexity was increased. Ne-
vertheless, the comparison is based on experimental values and not on error estimation. 

Apart from DFT, there exists another model known as the Hartree-Fock approximation 
(HF) where ψ is written as a single Slater determinant [2]. That model, mostly used for 
molecular systems, is based on a variational principle, and the global ℝ3Ne Schrödinger 
equation is rewritten as a system of Ne ℝ

3 equations. 

If we consider Nn nuclei and Ne electrons, without any external electric nor magnetic 
field, this equation reads for the wave function ψ(xi,XA) (in atomic units): 
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with (xi)1 ≤ i ≤ Ne the electron positions and (XA)1 ≤ A ≤ Nn the nucleus positions, 
and where Ven, Vee and Vnn stands for the Coulomb type potentials. 
In the classical Born-Oppenheimer approximation, the nucleus motions and the related 
laplacians are neglected. The wave function only depends on the electrons: 
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The HF approach uses Ne spin-orbitals ϕi, collected into a column vector 

∀ x ∈ ℝ3, Φ(x) = (ϕ1(x) … ϕNe(x))T. (3) 

These functions are normalized: ∫
ℝ3 Φ ⊗ Φ* = I  

and ψ satisfies the Pauli exclusion principle through a Slater determinant:  
 ψHF(xi) = Det[Φ(x1) … Φ(xNe)] (4) 
The Schrödinger equation gives the HF system with the unknown diagonal matrix ε: 
-1/2 ∆xΦ + [(Ven + TrG) I  – G] Φ = ε(Φ) and -∆xG = 4 π Φ ⊗ Φ* (5) 

However simple, it does not take into account the electron correlation correctly. Here 
again, further approximations have been elaborated known as post-HF, among which 
stands the configuration interaction (CI). In that case the form of the global wave-
function is a linear combination of Slater determinants, where the first one is the HF 
solution, and where the number of terms shall be discussed as well as the (virtual) spin-
orbitals taken into account: Φm(x) = (ϕm1(x) … ϕmNe(x))T (6) 

and ( ) ( ) ( )
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To detail the error estimation regarding HF, there are two models to consider: the 
Schrödinger equation (1) and the HF model (6). Their weak forms read respectively: 

∀ψt, a test function, 1/2 ∫
ℝ3 ∇ψ.∇ψt* + ∫

ℝ3 (Ven + Vee) ψ ψt* = Ee ∫ℝ3 ψ ψt* (8) 
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Since the HF model has really been computed from it, that last equation is equivalent to: 

 1/2 ∫
ℝ3 ∇ψHF.∇ψHFt* + ∫

ℝ3 (Ven + Vee) ψHF ψHFt* = EeHF ∫ℝ3 ψHF ψHFt* (10) 

So: (Ee – EeHF) ∫ℝ3 ψHF ψHFt* = 1/2 ∫
ℝ3 (∇ψ - ∇ψHF).∇ψHFt* (11) 

+ ∫
ℝ3 (Ven + Vee) (ψ - ψHF) ψHFt* – EeHF ∫ℝ3 (ψ - ψHFt) ψHF* 

The residual of ψHF in the exact Schrödinger equation appears in the right hand side, 
and we get the following final result: 
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which means that the exact energy Ee is approximated by the HF energy EeHF to the 
extent that the residual Res(ψHFt) is small and that the two wave functions ψ and ψHF 
are not orthogonal. Finally it should be pointed out that the term ||ψ - ψHFt|| is small if it 
is possible to approximate the exact wave by any suitable Slater determinant. 

A similar a posteriori error estimation can be inferred for ψ itself. It would be possible 
then to extend the analysis to other quantities of interest such as ρ, the derivative of E 
with respect to the nucleus positions to get the stresses… Using a conforming finite 
element method, the discrete trail space for the HF system is embedded in the HF space 
of Slater determinant so that the preceding analysis can be easily extended. 
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