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ABSTRACT 

Relationships between microstructure, local properties, and effective (global) properties of a 

material are often achieved through perturbation expansions [1, 2]. These may be written in the 

form of an infinite series of integrals involving correlation functions of increasing order. One 

major drawback of these series is the amount of computational effort required to include higher 

order terms. Hence they are often terminated at the first order (or less frequently, second order) 

terms. A common form of perturbation expansion for elastic properties, sometimes referred to 

as the weak contrast solution, is as follows [3]: 
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where C indicates the stiffness tensor, E and Φ are components of the isotropic Green’s 

function, and ,..., 'hhh
PP  are correlation functions of increasing order for material with local 

states ,', hh  etc. This has formed the basis for various studies in material design using inverse 

methods (e.g. [4]), hampered mainly by the intense computational requirements.  

A more robust formulation may be derived from the work of Brown [5] and Torquato [6], and is 

referred to as the strong contrast formulation, due to the absolutely convergent integrals, and it’s 

stability when applied to materials of higher contrast (in properties) between the phases. This 

formulation has recently been extended to enable its application to anisotropic polycrystalline 

materials [3]. A key element in the resulting framework is the introduction of a spectral 

framework, and the use of Fast Fourier transforms (FFTs) to enable rapid calculation of the 

higher order terms in the series. For example, by exploiting the convolution theory the third 

order correlation function may be efficiently calculated as: 
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where 
h

tM  is the local structure function for the material, defined on a grid with positions, t, 

and local states, h; 
'''
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nnP  is the 3-point correlation function in this digital space; N is the total 

number of points on the grid; and ℑ  indicates FFT. The final form of the efficient FFT 

framework for both the weak and strong contrast formulations is given in [3]. 



 

The integrals in Eq. (1) are typically evaluated between an infinitesimally small sphere about 

the origin, and a large sphere that is well beyond the correlation length. However, a significant 

error may arise from estimating an integral on a sphere using a rectangular grid. The isotropic 

Green’s function has natural symmetry on the sphere which is poorly captured using a 

rectangular grid – especially in the region of the origin. This is a particularly critical region of 

integration due to the singularity at the origin. Recent analysis using accurate monte-carlo 

integration indicates the potential for large errors in this region using the grid-based integrals 

typical of several previous works. These errors have masked the increased accuracy that should 

result from adding higher order terms to the series. 

However, the issue can be resolved to good 

accuracy by exploiting the fact that the integral 

that includes the Green’s function is identically 

zero in an annulus that contains material in a 

single local state. Similarly, the integral over a 

region between a sphere and a cube which 

contains material in a single state is a constant 

value – independent of their relative sizes. Thus, 

the tactic is to integrate over the grid used to 

define the FFTs, outside a cubic region that 

surrounds the origin, and within which lies a 

single material state. Then a single (constant) 

correction term is required to adjust for the 

remaining integral between an infinitesimal 

sphere and the cube (see Fig. 1). 

A similar correction can be made for the region 

between the outer bounds of the rectangular grid, 

and a sphere that encompasses it. 

These issues are amongst those that will be discussed in this presentation, along with an 

evaluation of the benefits obtained from exploiting the FFT framework – including the 

application to material design in the areas of both composites and polycrystals.. 
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Fig. 1. Material of a single state is shown 

about the origin as grey. The integral is 

evaluated on a grid outside a cube about the 

origin. The remaining integral (shown in 

black) is evaluated using a single constant 

correction term. 


