
8th. World Congress on Computational Mechanics (WCCM8)
5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008)

June 30 –July 5, 2008
Venice, Italy

ACCURATE SOLUTION OF GLOBAL FIELD INTERPOLATIONS FOR
PARTICLE SIMULATIONS

L. A. Barba1 and Louis F. Rossi2

1 Dept. of Mathematics, University of Bristol
University Walk, Bristol, BS8 1TW, U.K.
l.a.barba@bristol.ac.uk

2 Dept. of Mathematical Sciences, University of
Delaware, Newark, DL 19716, U.S.A.
rossi@math.udel.edu

Key Words: radial basis functions, vortex methods, particle simulation, interpolation, dense solvers.

ABSTRACT

The general problem of finding a set of basis functions which accurately represents a given function
is encountered often in particle simulations. It is also encountered of course in the basic interpolation
problem, where the value of the field or function is known at a set of points, and basis functions centered
on those points have to be found such that their superposition can represent the original unknown function
accurately. When the basis functions used are multi-quadrics, thin-plate splines or Gaussians, which all
have global support, the interpolation can be very accurate, but it is difficult to obtain due to the dense
systems which need to be solved. In view of this problem, many researchers in the area of radial basis
function interpolation have opted for bases of compact support, which result in an easier to solve sparse
system, with a compromise in the interpolation accuracy which can be obtained.

In particle methods such as the vortex method for the simulation of incompressible fluid flow, one first
encounters such an interpolation problem at the initialization stage of an initial value problem. When an
initial vorticity distribution needs to be discretized using vortex particles, one chooses the locations or
centres of the particles, and the size or radial spread of the bases (in the vortex method, this would be the
smallest scales that can be resolved). It is common to use a Gaussian basis function in this application.
What remains is to obtain the appropriate weights of each particle, such that their superposition represents
well the initial vorticity.

For a straightforward but low accuracy solution of this problem, it has been standard for many years
to initialize the vorticity on a regular lattice with separation h, and give the particles a weight γ by the
assignment γi = ωih

2 (in 2D; h3 needs to be used instead in 3D). Here, ωi represents the vorticity
value (the function being interpolated) at each particle location. This method is similar to a midpoint
approximation and does not require the solution of a linear system. It can be used where it is expected that
spatial or temporal errors will be larger than the interpolation error and thus will dominate the simulation.
Once the weights γi are found, the vorticity field becomes represented by: ω(x) =

∑
i γiζσ(x − xi),

where ζ represents the basis function and σ its radial size.

There is a second instance when field interpolation is needed in a vortex particle simulation, and it is
when one wishes to replace a set of particles after they have been deformed by the flow strain. La-
grangian effects in this method cause particles to become clustered in certain directions and open gaps



in other areas, such that the particles no longer overlap and their superposition no longer represents a
continuous field accurately. Many researchers have addressed this problem of replacing a disordered
configuration of particles with a uniform one using some form of short-range interpolation. One popular
interpolation method is the use of tensor products of splines, such as those used in the smoothed particle
hydrodynamics method, applied to the circulation (weights) of the particles. This approach is widely
used today by vortex method workers to perform long-time simulations.

If one seeks a high accuracy interpolation, the methods described above for initialization and spatial
adaptation can be improved. In this vein, the use of radial basis function interpolation was proposed and
demonstrated in [1]. One reason to want a more accurate field interpolation method is to take advantage
of the high spatial order techniques using dynamically adaptive elliptical basis functions [2].

Most global field interpolation methods rely on the solution of a linear system Aγ = ω, where γ is a
vector holding the weights, and ω is the vector of vorticty values. The matrix A maps the circulations to
vorticity as the linear combination of basis functions which represents the vortex method discretization.
The matrix is ill-conditioned, because basis functions overlap to provide good spatial accuracy. One can
use some iterative solver, such as GMREs, to obtain the particle weights, but some kind of preconditioner
will be essential for effective solution of the system.

We investigate some new methods for performing accurate field interpolations in the applications de-
scribed above. For performing a preconditioned iterative solution of the dense linear system, we devel-
oped a preconditioner based on using the inverse of a sparse approximation to the matrix A. The sparse
matrix is obtained by truncating the tails of the Gaussian basis functions, and the cutoff length for getting
the sparse approximate matrix determines the convergence rate and the accuracy of the result. Using this
preconditioner, we can solve the preconditioned system to machine precision in two or three GMRES
iterations. Second, we borrow techniques from image processing to improve the naive approximation
γi = ωih

2. It can be shown that this approximation amounts to a Gaussian blurring of the true vorticity
field via Newtonian diffusion. To improve the accuracy of the representation using the sum of Gaussians,
we can solve the reverse heat equation for time ∆t = h. This system can be solved using direct, explicit
difference schemes to achieve a high accuracy approximation with small computational effort. So far,
the accuracy improvement is not as considerable as when solving the full linear system, but of course the
computational effort is much smaller.

We demonstrate the efficacy of the techniques we developed by performing computations of inviscid and
viscous axisymmetrization of elliptical vortices. At high Reynolds numbers, these flows result in highly
elliptical configurations which can be unstable and eject long, thin filaments of vorticity. To resolve these
features with modest computational resources, high order methods are required and field interpolation is
essential for maintaining accuracy over moderate flow times. We use this challenging set of problems to
compare various field interpolation techniques.
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