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ABSTRACT 

The variational problem of generating structured grids in the plane, in the context of the 

direct optimization method, has been successfully discussed in detail in previous papers. 

There is currently a robust theory regarding area and harmonic functionals, which can 

be used for the successful gridding of very irregular regions [1-7,11-14] A deep 

geometric insight of these functionals is available, as presented in [1]. Adaptive 

versions for all these functionals have also been developed [2]. 

 

By analyzing the grids generated on very irregular regions, a question that arises 

immediately is how good they are or can be. To answer it, we must pose what can be 

understood as quality in the variational setting of the grid generation problem.  

 

By noting that the main difficulty to answer this question is the large scale feature of the 

problem, in [4], we provided an intuitive scale independent new convexity test 

motivated by the geometrical interpretation of the algorithms addressed in those papers, 

and the fact that the area values of the cells in every optimal grid are as less spread out 

as possible. Such test is remarkable useful to classify irregular regions in a very intuitive 

scale. 

 

In this paper, we propose a simple genetic-like algorithm in order to produce a fast and 

robust calculation of the critical convexity parameters of the optimal grids generated by 

variational methods. 
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