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ABSTRACT

In this talk, we review existing discontinuous Galerkin(DG) methods for elasticity and introduce a new
formulation based on mixed finite elements which preserves the important property of being locally
conservative. We then highlight the subtle and important differences between Interior Penalty(IP) and
mixed FEM based methods. With regards to mixed method for elasticity, choices of approximating
spaces for primal and dual variable is non-trivial for two main reasons, namely the compatibility be-
tween the two spaces(inf-sup condition) and a symmetry condition for interpolating stress tensor in such
a space. We will discuss and address these issues and show that the resulting mixed scheme is highly
simplified, extremely robust and optimally convergent in global norms.

Interior Penalty (IP) based DG methods for linear elasticity and quasi-static viscoelasticity have been
proposed by Riviére in [1] based on early work by and Baumann, Oden and Babuska [2].Symmetric and
non-symmetric versions of IPG method have been further studied by Wihler in [3] and others and are
shown to be locking free(robust) for incompressible materials. The method is however based on using
non symmetric flux terms(on internal boundaries) and interior penalty for imposing weak inter-element
continuity and these terms render it locally non-conservative. In more recent work by Tenyck and Lew
[4] IP based DG method was used for nonlinear elasticity problems.

We define a Lipschitz continuous domainΩ, displacement fieldui, gradient of the displacement field
ǫij , strains asǫs

ij, Lame’s parameters(λ, µ) and stressesσij. Now using the finite element spaces:

V h = {vi ∈ L2(Ω) : vi|Ωk
∈ Pm(Ωk),Ωk ∈ Th,∀ i ∈ {1, 2}}

W h = {sij ∈ L2(Ω) : sij|Ωk
∈ Pn(Ωk),Ωk ∈ Th,∀ i, j ∈ {1, 2}}

where,Pm(Ωk) denotes the standard order ’m’ polynomial space based on hierarchical(Legendre) basis
functions, we define mixed DGFEM forms. Find(ui, ǫij) ∈ V h × Sh such that∀(vi, sij) ∈ V h × Sh,
satisfying either (1) and (2) or (3) and (4)

a(ǫ, S) + b(u, S)− < u,S >= 0 (1)

c(σ, v)− < σijnj, ui >= f(v) (2)

a(ǫ, S) + B(u, S) = 0 (3)

c(σ, v)− < σijnj , ui > +Γ(u, v) = f(v) (4)
where

a(ǫ, S) =

∫
Ωk

ǫijSijdΩ b(u, v) =

∫
Ωk

uiSij,jdΩ B(u, v) =

∫
Ωk

ui,jSijdΩ

c(σ, v) =

∫
Ωk

σij(u)ǫij(v)dΩ Γ(u, v) =
cµ

h

∫
∂Ωk

[[ui]][[vi]]ds < u, v >=

∮
∂Ωk

uvds



For these formulations we prove consistency and convergence in appropriate global norms and local
conservations. We also illustrate the convergence behavior using a set of numerical examples. The
results show good convergence. We also investigate numerical behavior of theinf-sup constants and
condition numbers.

Figure 1: Comparison of error in various DGFEM solutions with m = 2 on 8x8 mesh
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