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ABSTRACT 

Standard radial basis function [1] offers exponential convergence, however the method 
is suffered from the large condition numbers due to its ”nonlocal” approximation. The 
nonlocality of RBF also limits its application to small scale problems. The reproducing 
kernel approximation [2], on the other hand, provides polynomial reproducibility in a 
”local” approximation, and the corresponding discrete system exhibits a relatively small 
condition number. Nonetheless, reproducing kernel approximation produces only 
algebraic convergence. This work intends to combine the advantages of radial basis 
function and reproducing kernel approximation function to yield a local approximation 
that is more stable than that of RBF, while at the same time offers a higher rate of 
convergence than that of reproducing kernel approximation. We formulated a localized 
RBF by introducing a reproducing kernel as the localizing function under the general 
framework of partition of unity [3]. The error analysis shows that if the error of 
reproducing kernel is sufficiently small, the proposed method maintains the exponential 
convergence of RBF, while significantly improving the conditioning of the discrete 
system and yielding a banded matrix. In two-dimensional Poisson problem we the 
following condition numbers: 

Radial Basis Function (RBF) : 
Reproducing Kernel (RK) : 

Proposed local RBF :
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where h is the nodal distance. We see that there exists a significant reduction in 
condition number in the proposed local RBF compared to the standard RBF. A Poisson 
problem is given to demonstrate the stability and accuracy of proposed method: 

( ) ( )2 2, xyu x y x y e∆ = +  in ( ) ( )0,1 0,1Ω = ×  and ( ), xyu x y e=  on ∂Ω . In this study, 

multiquadrics (MQ) RBF,  Wendland function 5,3g  [4] constructed using MQ-RBF, 

pure RK function with quadratic basis ( )2p =  and cubic basis ( )3p = , and the 
proposed local RBF (L-RBF) constructed by MQ-RBF localized with RK function are 



 

compared. The number of collocation points is selected to be four times of the number 
of source points (discrete points. The condition number and convergence in L2 error 
norm are shown in Figures 1 and 2 respectively. Good convergence in the proposed L-
RBF is observed. The condition number of the proposed L-RBF is in-between the 
standard global RBF and the local RK function in coarse discretization. It is observed 
that the condition numbers increase as discretization is refined in both standard RBF 
and the Wendland function with large support, whereas the condition numbers in RK 
and L-RBF are quite insensitive to the resolution of discretization. 
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Figure 1. Condition numbers change as refinement in 2D Poisson problem 
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RBF ((r2+c2)(3/2),c=15h) 4.11
RK (p=2,a=3h) 3.22
RK (p=3,a=4h) 4.51
L-RBF ((r2+c2)(3/2),c=h/2,p=3,a=4h) 4.72
L-RBF ((r2+c2)(3/2),c=2h,p=3,a=4h) 5.02
L-RBF ((r2+c2)(3/2),c=15h,p=3,a=4h) 5.55
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Wendland (g5,3,a=0.6) 3.13
Wendland (g5,3,a=4h) -2.20

L-RBF ((r2+c2)(3/2),c=h/2,p=3,a=4h) 4.72
L-RBF ((r2+c2)(3/2),c=2h,p=3,a=4h) 5.02
L-RBF ((r2+c2)(3/2),c=15h,p=3,a=4h) 5.55

 
Figure 2. Convergence of L2 error norm in 2D Poisson problem 
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