An *a posteriori* error estimator for a quadratic C^0 interior penalty method for the biharmonic problem

* Susanne C. Brenner¹, Thirupathi Gudi² and Li-yeng Sung³

1 Department of Math-² Center for Computation ³ Department of Matheand Technology, Louisiana Louisiana ematics and Center for matics, State University, Computation and Tech-State Baton University, Baton Rouge, LA Rouge, LA 70803, USA 70803, USA nology, Louisiana State University, Baton Rouge, LA tgudi@cct.lsu.edu sung@math.lsu.edu 70803, USA brenner@math.lsu.edu

Key Words: adaptive, quadratic C^0 interior penalty method, biharmonic problem.

ABSTRACT

 C^0 interior penalty methods for fourth order problems were introduced by Engel *et al.* in [1] and further studied in [2,3,4,5]. These methods use standard C^0 finite elements for second order problems and they preserve the symmetric positive-definiteness of the continuous problems. Moreover, the derivations of these methods are very straightforward, using only integration by parts, symmetrization and penalization. Therefore C^0 interior penalty methods have various advantages over the classical approaches of conforming finite elements, mixed finite elements and nonconforming finite elements.

Let $\Omega \subset \mathbb{R}^2$ be a bounded polygonal domain and $f \in L_2(\Omega)$. Consider the model biharmonic problem of finding $u \in H_0^2(\Omega)$ such that

$$\sum_{i,j=1}^{2} \int_{\Omega} \frac{\partial^2 u}{\partial x_i \partial x_j} \frac{\partial^2 v}{\partial x_i \partial x_j} \, dx = \int_{\Omega} f v \, dx \qquad \forall v \in H_0^2(\Omega). \tag{1}$$

Let \mathcal{T}_h be a simplicial triangulation of Ω and $V_h \subset H_0^1(\Omega)$ be the Lagrange P_2 finite element space associated with \mathcal{T}_h . The quadratic C^0 interior penalty method for (1) is to find $u_h \in V_h$ such that

$$\sum_{T \in \mathcal{T}_{h}} \sum_{i,j=1}^{2} \int_{T} \frac{\partial^{2} u_{h}}{\partial x_{i} \partial x_{j}} \frac{\partial^{2} v_{h}}{\partial x_{i} \partial x_{j}} dx + \sum_{e \in \mathcal{E}_{h}} \int_{e} \left\{ \left\{ \frac{\partial^{2} u_{h}}{\partial n^{2}} \right\} \right\} \left[\left[\frac{\partial v_{h}}{\partial n} \right] \right] ds + \sum_{e \in \mathcal{E}_{h}} \int_{e} \left\{ \left\{ \frac{\partial^{2} v_{h}}{\partial n} \right\} \right\} \left[\left[\frac{\partial u_{h}}{\partial n} \right] \right] ds + \sum_{e \in \mathcal{E}_{h}} \frac{\eta}{h_{e}} \int_{e} \left[\left[\frac{\partial u_{h}}{\partial n} \right] \right] \left[\left[\frac{\partial v_{h}}{\partial n} \right] \right] ds = \int_{\Omega} f v_{h} dx$$
(2)

for all $v_h \in V_h$, where \mathcal{E}_h (respectively \mathcal{E}_h^i) is the set of the edges (respectively interior edges) of \mathcal{T}_h ,

 $\left[\!\left[\frac{\partial v_h}{\partial n}\right]\!\right] \quad \text{and} \quad \left\{\!\left\{\frac{\partial^2 v_h}{\partial n^2}\right\}\!\right\}$

denote the jump of the normal derivative and the mean of the second order normal derivative across the edges respectively, h_e is the length of the edge e, and $\eta \ge 1$ is a sufficiently large penalty parameter.

In this talk we discuss a residual-based a posteriori error estimator

$$\mathbb{E}(u_h) = \left(\sum_{T \in \mathcal{T}_h} h_T^4 \|f\|_{L^2(T)}^2 + \sum_{e \in \mathcal{E}_h} \frac{\eta^2}{h_e} \int_e \left[\left[\frac{\partial u_h}{\partial n} \right] \right]^2 ds + \sum_{e \in \mathcal{E}_h^i} h_e \int_e \left[\left[\frac{\partial^2 u_h}{\partial n^2} \right] \right]^2 ds \right)^{1/2},$$

for the solution u_h of (2), where h_T denotes the diameter of T. This error estimator is both reliable and efficient with respect to the norm $\|\cdot\|_{H^2(\Omega,\mathcal{T}_h)}$ defined by

$$\|v\|_{H^2(\Omega,\mathcal{T}_h)}^2 = \sum_{T\in\mathcal{T}_h} \sum_{i,j=1}^2 \left\|\frac{\partial^2 v}{\partial x_i \partial x_j}\right\|_{L_2(T)}^2 + \sum_{e\in\mathcal{E}_h} \frac{\eta}{h_e} \left\| \left[\!\left[\frac{\partial v}{\partial n}\right]\!\right]^2 \right\|_{L_2(e)}^2.$$

More precisely, we have

$$\|u - u_h\|_{H^2(\Omega, \mathcal{T}_h)} \le C_1 \mathbb{E}(u_h),\tag{3}$$

$$\mathbb{E}(u_h) \le C_2 \eta^{1/2} \Big(\|u - u_h\|_{H^2(\Omega, \mathcal{T}_h)}^2 + \sum_{T \in \mathcal{T}_h} h_T^4 \|f - \bar{f}\|_{L^2(T)}^2 \Big)^{1/2}, \tag{4}$$

where \bar{f} is the L_2 -orthogonal projection of f onto the space of piecewise constant functions with respect to \mathcal{T}_h , and the constants C_1 and C_2 depend only on the shape regularity of \mathcal{T}_h .

We will outline the derivations of (3) and (4), and present numerical results that demonstrate the performance of the error estimator. Details can be found in [6].

REFERENCES

- [1] G. Engel, K. Garikipati, T.J.R. Hughes, M.G. Larson, L. Mazzei and R.L. Taylor. "Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity". *Comput. Methods Appl. Mech. Engrg.*, Vol. **191**, 3669–3750, 2002.
- [2] G.N. Wells and K. Garikipati and L. Molari. "A discontinuous Galerkin formulation for a strain gradient-dependent damage model". *Comput. Methods Appl. Mech. Engrg.*, Vol. 193, 3633–3645, 2004.
- [3] S.C. Brenner and L.-Y. Sung. "C⁰ interior penalty methods for fourth order elliptic boundary value problems on polygonal domains". J. Sci. Comput., Vol. **22/23**, 83–118, 2005.
- [4] S.C. Brenner and K. Wang. "Two-level additive Schwarz preconditioners for C⁰ interior penalty methods". *Numer. Math.*, Vol. **102**, 231–255, 2005.
- [5] S.C. Brenner and L.-Y. Sung. "Multigrid algorithms for C⁰ interior penalty methods". SIAM J. Numer. Anal., Vol. 44, 199–223, 2006.
- [6] S.C. Brenner, T. Gudi and L.-Y. Sung. "An *a posteriori* error estimator for a quadratic C^0 interior penalty method for the biharmonic problem". preprint, Department of Mathematics, Louisiana State University, 2008.