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ABSTRACT

C0 interior penalty methods for fourth order problems were introduced by Engel et al. in [1] and further
studied in [2,3,4,5]. These methods use standard C 0 finite elements for second order problems and they
preserve the symmetric positive-definiteness of the continuous problems. Moreover, the derivations of
these methods are very straightforward, using only integration by parts, symmetrization and penaliza-
tion. Therefore C0 interior penalty methods have various advantages over the classical approaches of
conforming finite elements, mixed finite elements and nonconforming finite elements.

Let Ω ⊂ R
2 be a bounded polygonal domain and f ∈ L2(Ω). Consider the model biharmonic problem

of finding u ∈ H2
0 (Ω) such that
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Let Th be a simplicial triangulation of Ω and Vh ⊂ H1
0 (Ω) be the Lagrange P2 finite element space

associated with Th. The quadratic C0 interior penalty method for (1) is to find uh ∈ Vh such that
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for all vh ∈ Vh, where Eh (respectively E i
h) is the set of the edges (respectively interior edges) of Th,
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denote the jump of the normal derivative and the mean of the second order normal derivative across the
edges respectively, he is the length of the edge e, and η ≥ 1 is a sufficiently large penalty parameter.

In this talk we discuss a residual-based a posteriori error estimator

E(uh) =
(

∑

T∈Th

h4
T ‖f‖

2
L2(T ) +

∑

e∈Eh

η2

he

∫

e

[[

∂uh

∂n

]]2

ds +
∑

e∈Ei

h

he

∫

e

[[

∂2uh

∂n2

]]2

ds
)1/2

,

for the solution uh of (2), where hT denotes the diameter of T . This error estimator is both reliable and
efficient with respect to the norm ‖ · ‖H2(Ω,Th) defined by
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More precisely, we have

‖u − uh‖H2(Ω,Th) ≤ C1 E(uh), (3)

E(uh) ≤ C2η
1/2

(
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∑
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)1/2
, (4)

where f̄ is the L2-orthogonal projection of f onto the space of piecewise constant functions with respect
to Th, and the constants C1 and C2 depend only on the shape regularity of Th.

We will outline the derivations of (3) and (4), and present numerical results that demonstrate the per-
formance of the error estimator. Details can be found in [6].
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