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Let us consider the following simplified problem. We consider the unique
parabola that passes through the three points ~x1, ~x2, and ~x3. One possible repre-
sentation of the parabola can be written as
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It maps the interval ξ ∈ [−1, 1] onto the parabola using the so called quadratic
Lagrange polynomials.

The tangent vector
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can be written in a more convenient form
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than involves the two tangent vectors ~t1 = ~t(−1) and ~t2 = ~t(1) at the end points
of the parabola that are interpolated using Lagrange shape functions of one order
lower than the parametrization, i.e. of order one.

Now, our aim is to build an vector-valued interpolation ~v(ξ) that is always
tangent to the parabola. Let us consider the following polynomial expansion at
order p
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Multiplying ~t by f allows to build a parametrizes tangent vector to the parabola:
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For sake of simplicity, let us expand this last expression for p = 1:
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Equation (1) is a vector valued finite element approximation that make use of
quadratic vector valued shape functions ~T1(ξ) and ~T2(ξ) and of scalar coefficients
f1 and f2. Clearly, we have ~T1(−1) = ~t1 and ~T2(1) = ~t2 so that our approximation
looks very much like a classical finite element approximation: f1 and f2 can be
interpreted as vector amplitudes at element end points. Disappointingly, this way
of approximating fields cannot be used in a finite element framework because it
does not fullfill the simpliest patch test: it is easy to see that (1) does not allow to
interpolate a vector of constant amplitude on the parabola.

It is possible to remedy to that problem using unit tangent vectors:
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This approximation allows to make the amplitude of ~v to vary polynomially while
remaining tangent to the parabola. Of course, vector shape functions are not poly-
nomials, making finite element assembly process more expensive.

In this paper, we start by extending this way of interpolating vectors to 2D
manifolds. We apply this technique to Discontinuous Galerkin discretization of
the rotating shallow waters equations. This approach has the advantage to avoid
the use of Lagrange multipliers: here, vectors are naturally tangent to the man-
ifold. Then, we show how to solve problems on curvilinear meshes for which
the normal may not be continuous through element interfaces. The classical
Williamson test cases will serve as examples to assert the method.
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