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ABSTRACT 

Traditional explicit solid dynamics formulations are based on the central difference time 
integration of the second order dynamic equilibrium equation for the displacements [1-
2]. Using linear elements this leads to second order convergence for displacements but 
first order convergence for strains and stresses and constant stress hexahedron with 
hourglass control are typically used. Perhaps more importantly, many applications 
involving complex realistic geometries can often only be meshed using triangles or 
tetrahedra. In addition, mesh adaptation is often required following large strains but can 
only be achieved at a reasonable cost with simple tetrahedral elements. Unfortunately, 
these elements lock in the presence of nearly incompressible deformations, which are 
common in elastoplastic flows. Efforts to develop tetrahedral elements that are effective 
in nearly incompressible situations and not overly stiff in bending have only been 
partially successful, as the resulting formulations suffer from artificial mechanisms 
similar to hourglassing [3-4]. 

Recently, a formulation based on first order conservation laws has been proposed for 
explicit solid dynamics using a Discontinuous spatial discretization approach [5]. This 
is based on formulating the problem in terms of the conservation of momentum and 
energy: 
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where  is the linear momentum,  E  the total energy per unit initial volume, Q  
is the heat flux vector, P  the first Piola-Kirchhoff stress tensor and b  the external body 
forces (see figure 1); together with a further equation for the rate of change of the 
deformation gradient  given as: 
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This represents a mixed formulation in which both the velocities and deformation 
gradient are primary problem variables. In this way the interpolation accuracy for 



 

velocities and strains/stresses will be equal. Similar conservation law formulations have 
been used by other authors in the Eulerian context [6-7]. 
The paper will present a 2-step Taylor-Galerkin discretization of the above equations [8-
9] which permits the use of linear triangles and tetrahedral elements without volumetric 
locking or difficulties in bending applications. 
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Figure 1: Problem definition and notation 
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