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ABSTRACT

Traditional finite element methods (FEM) and boundary element methods (BEM) have been based
on weak-form formulations. Recently, weak-form meshless (meshfree) methods are being developed
as an alternative approach. Weak-form methods have the following advantages [1]. a) They have
good stability and reasonable accuracy for many problems. b) The traction (derivative or Neumann)
boundary conditions can be naturally and conveniently incorporated into the same weak-form equation.
However, elements have to be used for the integration of a weak form over the global problem domain
and the numerical integration is still computationally expensive for these weak-form methods. On the
other hand, collocation methods are based on strong-form governing equations and have been found
to possess the following attractive advantages [1]. a) There is no need for numerical integration of
the governing equations. b) The implementation is simple. However, the strong-form approach is less
stable due to the pointwise nature of error minimisation. Furthermore, strong-form methods such as
finite difference and pseudo spectral methods are restricted to regular domains.

Following a strong-form approach, this paper describes a new efficient method using integrated radial
basis function network (IRBFN) and cartesian grid [2] for the numerical modelling of 2D elasticity
problems in both regular and irregular domains. Clearly, the generation of a cartesian-grid is a straight-
forward task and therefore the cost associated with spatial discretisation is greatly reduced in com-
parison with that associated with FE generation. However, there are challenges in the handling of an
irregular boundary [3]. To meet the challenges faced by the collocation methods, firstly we introduce
a new approach based on displacement-stress formulation where both displacements and stresses are
considered as primary variables. As a result, mixed boundary conditions are easily and directly ac-
commodated. Secondly, a new technique based on 1D-IRBFN is introduced to accurately interpolate
variables along grid lines. The strength of this technique is that irregular boundaries can be easily and
accurately represented.

The new approach is illustrated with the analysis of Timoshenko beam (Figures 1 and 2) and an infinite
plate with a circular cutout (Figures 3 and 4). Numerical results show that the present method achieves
very good accuracy and high convergence rates for both compressible and incompressible solids and no
volumetric locking effects are observed for the latter case.
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Figure 1: Timoshenko beam: domain discretiza-
tion with and cartesian-grid.
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Timoshenko Beam µ = 0.3

 

 

L2 norm, rate = 3.2137
H1 norm, rate = 3.1811

Figure 2: Timoshenko Beam problem (Poisson
ratio µ = 0.3): relative error norms L2 (dis-
placement) and H1 (stress).
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Infinite plate with a circular hole

Figure 3: Infinite plate with a circular hole prob-
lem: computational domain, discretization with
cartesian-grid.
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Plate−Hole problem: plane stress − µ = 0.5

 

 

L2 norm, rate = 4.1829
H1 norm, rate =4.1180

Figure 4: Infinite plate with a circular hole prob-
lem (Poisson ratioµ = 0.5 incompressible mate-
rial): relative error norms L2 (displacement) and
H1 (stress).

REFERENCES

[1] G. R. Liu. Mesh Free Methods: Moving beyond the Finite Element Method, CRC Press,
2003.

[2] Mai-Duy N and Tran-Cong T. “A Cartesian-grid collocation method based on radial-basis-
function networks for solving PDEs in irregular domains”.Numerical Methods for Partial
Differential Equations, Vol. 23, 1192–1210, 2007.

[3] P. J. Roache.Computational Fluid Dynamics, Hermosa Publishers, 1980.


