INTEGRATION SCHEME FOR WAVE BOUNDARY ELEMENTS

* J. Trevelyan¹ and M. E. Honnor²

¹ Durham University	² Durham University
School of Engineering	School of Engineering
South Road	South Road
Durham DH1 3LE, UK	Durham DH1 3LE, UK
jon.trevelyan@durham.ac.uk	m.e.honnor@durham.ac.uk

Key Words: BEM, Helmholtz Problems, Partition of Unity, Oscillatory Integrals.

ABSTRACT

We address problems of three-dimensional wave scattering governed by the Helmholtz equation

$$\nabla^2 \phi(x) + k^2 \phi(x) = 0, \qquad x \equiv (x, y, z) \in \Omega$$
(1)

in which ϕ is a complex valued potential field that we seek in Ω . The domain is bounded internally by a scatterer of boundary Γ , which is impinged by an incident plane wave ϕ^I . We denote with k the wave number. The solution is sought subject to boundary conditions of the general form

$$\nabla \phi(x) \cdot n = \nu \phi(x) + \beta, \quad x \in \Gamma$$
⁽²⁾

in which n is the unit normal directed outward from Ω . Classical approaches lead to the expression of the differential equation in boundary integral form as the sum of layer potentials

$$\frac{1}{2}\phi(x_0) + (\mathcal{K}\phi)(x_0) - \nu(\mathcal{S}\phi)(x_0) = \phi^I(x_0) + (\mathcal{S}\beta)(x_0), \quad x_0 \in \Gamma$$
(3)

where $(S\phi)(x_0)$ and $(K\phi)(x_0)$ are the usual single and double layer potential operators. Wave boundary elements use Partition of Unity [1] ideas, expressing ϕ at node j as a linear combination of plane waves $A_{jm}e^{ikd_{jm}\cdot x}$, m = 1, ..., M. This has been found to provide marked benefits in accuracy and efficiency [2], but suffers from a requirement to evaluate highly oscillatory boundary integrals of the form

$$I_{jm}(x_0) = \int_{-1}^{+1} \int_{-1}^{+1} f(x_0,\xi,\eta) e^{ikg_{jm}(x_0,\xi,\eta)} d\xi d\eta$$
(4)

Here, $f(x_0, \xi, \eta)$ represents the slowly varying terms (deriving from the non-oscillatory part of the Green's function, the Jacobian and the shape function) and

$$g_{jm}(x_0,\xi,\eta) := r + d_{jm} \cdot x \tag{5}$$

is the direction along which oscillation takes place, $r := |x - x_0|$ being the usual radial coordinate in boundary integral methods. We present an integration scheme based on a numerical coordinate transformation, in which the element is partitioned into quadratic triangular and quadrilateral subdivisions

Figure 1	1:	Contours	of	Re((integrand))
----------	----	----------	----	-----	-------------	---

Figure 2: Element subdivisions

k	High	order	New scheme		New scheme (nsd)	
	NGP	ε	NGP	ε	NGP	ε
250	6 412 332	$2.92 \text{ x } 10^{-12}$	123 104	$4.47 \ge 10^{-12}$	18 369	$6.46 \ge 10^{-13}$
500	25 649 328	$1.23 \ge 10^{-11}$	246 256	$1.64 \ge 10^{-11}$	19 909	$7.61 \ge 10^{-12}$
1000	102 597 312	$1.37 \ge 10^{-12}$	492 492	$1.66 \ge 10^{-11}$	22 987	$7.62 \ge 10^{-12}$

Table 1: Number of Gauss points (NGP) and relative error ε for flat triangular element

bounded by contours of $g_{jm}(x_0, \xi, \eta) = const.$ and by a set of lines orthogonal to these contours, as illustrated in Figures 1 and 2. Each subdivision may be treated using a high order quadrature in the oscillatory direction but a low order quadrature in the direction along the contours of $g_{jm}(x_0, \xi, \eta) = const.$ Typically only 8 Gauss points are required per subdivision in the non-oscillatory direction (seemingly independent of wavelength) to give results of similar accuracy to high order integration of 30 Gauss points per wavelength but using far fewer Gauss points (Table 1 shows illustrative results for a triangular element having side lengths 2, $\sqrt{2}$, $\sqrt{6}$). Some subdivisions around the periphery are seen in Figure 2 to extend outside the parent element; the addition and subtraction of the contributions from these extensions removes difficulties found using the low order scheme in these subdivisions. The new scheme exhibits complexity O(k), comparing with $O(k^2)$ for the high order scheme.

The complexity can be improved to little more than O(1) by making use of the method of numerical steepest descent (nsd) [3] in the oscillatory direction, but this becomes a cost-effective enhancement in CPU time only for integrals over boundary elements spanning more than 200 to 300λ .

REFERENCES

- [1] J.M. Melenk and I. Babuška. "The Partition of Unity Finite Element Method. Basic Theory and Applications". *Comp Meth in Appl Mech and Eng*, Vol. **139**, 289–314, 1996.
- [2] E. Perrey-Debain, O. Laghrouche, P. Bettess and J. Trevelyan. "Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering". *Phil. Trans. Royal Soc. London A*, Vol. **362**, 561–577, 2004.
- [3] D. Huybrechs and S. Vandewalle. "On the evaluation of highly oscillatory integrals by analytic continuation". *SIAM J. Numer. Anal*, Vol. **44**, 1026–1048, 2006.