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ABSTRACT

This paper describes a non-overlapping multidomain radial-basis-function (RBF) technique that im-
proves smoothness of the approximate solution across subdomain interfaces. In general, the procedure
is similar to the Schur complement approach where the interface solutions are obtained before the sub-
domain solutions. In particular, subdomain problems are solved using the integrated RBF collocation
technique. On each subdomain, highest-order derivatives in the given differential equation (DE) are
approximated using RBF networks, and lower-order derivatives and the variable itself are then obtained
through integration. The present integrated RBF technique introduces integration constants which pro-
vide an effective means to collocate the DE on the interfaces. Continuity enforcements employed in the
Schur complement system and the satisfaction of the DE on the subdomain interfaces in the subdomain
discrete system leads to a solution that is continuous across the interfaces with one order higher than
that achieved with conventional domain decomposition techniques.

The attractiveness of the present higher-order domain decomposition technique is demonstrated through
the solution of one-dimensional elliptic problem (Table 1) and two-dimensional elliptic problem (Table
2).



Table 1: d2u/dx2 = − sin(πx), −1 ≤ x ≤ 1, Dirichlet boundary conditions, exact solution ue =
sin(πx)/π2, 5 subdomains: Relative L2 errors of u computed at a test set of 201 uniformly distributed
points by the multidomain differentiated and integrated RBF techniques. The latter outperforms the
former regarding both accuracy and convergence rate.

n Ne(u)
(Points/subdomain) Differential approach Integral approach

11 4.34 × 10−1 4.92 × 10−4

21 4.25 × 10−1 1.23 × 10−4

31 4.22 × 10−1 5.53 × 10−5

41 4.21 × 10−1 3.12 × 10−5

51 4.20 × 10−1 2.00 × 10−5

61 4.20 × 10−1 1.39 × 10−5

71 4.20 × 10−1 1.02 × 10−5

81 4.19 × 10−1 7.83 × 10−6

91 4.19 × 10−1 6.19 × 10−6

101 4.19 × 10−1 5.02 × 10−6

Table 2: Poisson equation, −1 ≤ x, y ≤ 1, Dirichlet boundary conditions, exact solution ue(x, y) =
sin(πx) sinh(y) + cosh(2x) cos(2πy): Relative L2 errors and their orders by the one-domain and mul-
tidomain integrated RBF methods. The latter is able to employ much larger numbers of collocation
points (e.g., up to 40,400 grid points used here). It is remarkable that there is only a slight reduction in
convergence rate from the case of single domain to the case of 16 subdomains.

Single domain Sixteen subdomains
nx × ny Ne(u) nx × ny/subdomain Ne(u)

3 × 3 1.0275e+0 3 × 3 9.0074e-2
7 × 7 2.6783e-2 7 × 7 2.6275e-3

11 × 11 4.1082e-3 11 × 11 5.7330e-4
15 × 15 1.1806e-3 15 × 15 2.0881e-4
19 × 19 4.6597e-4 19 × 19 9.7596e-5
23 × 23 2.2276e-4 23 × 23 5.2946e-5
27 × 27 1.2160e-4 27 × 27 3.1731e-5
31 × 31 7.3428e-5 31 × 31 2.0427e-5
35 × 35 4.8094e-5 35 × 35 1.3881e-5
39 × 39 3.3691e-5 39 × 39 9.8421e-6
43 × 43 2.4953e-5 43 × 43 7.2226e-6
47 × 47 1.9339e-5 47 × 47 5.4544e-6
51 × 51 1.5545e-5 51 × 51 4.2197e-6

O(h3.51) O(h3.07)


