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1 Introduction

Two standard procedures for building finite element mass matrices have been known and widely used since the
mid 1960s, leading to consistent and diagonally-lumped forms. These models are denoted by MC and ML,
respectively, in the sequel. Collectively these take care of many engineering applications in structural dynamics.
Occasionally, however, they fall short. The gap can be filled with a more general approach that relies on templates.
These are algebraic forms that carry free parameters. This approach is covered in this paper using one-dimensional
structural elements as expository examples.

The template approach has the virtue of generating a set of mass matrices that satisfy certain a priori constraints
such as symmetry, nonnegativity, invariance and momentum conservation. In particular, the diagonally-lumped
and consistent mass matrices can be obtained as instances. Thus those standard models are not excluded. Avail-
ability of free parameters, however, allows the mass matrix to be customized to special needs such as high pre-
cision in vibration analysis, or minimally dispersive wave propagation. This versatility will be evident from the
examples. The set of parameters is called the template signature, and uniquely characterizes an element instance.

An attractive feature of templates for FEM programming is that each “custom mass matrix” need not be coded
and tested individually. It is sufficient to implement the template as a single element-level module, with free
parameters as arguments, and simply adjust the signature to the problem at hand. In particular the same module
should be able to produce the conventional CMM and DLMM models, which can provide valuable crosschecking.
The ability to customize the mass matrix is not free of cost. The derivation is more complicated, even for 1D
elements, than those based on standard procedures. In fact, hand computations rapidly become unfeasible. Help
from a computer algebra system (CAS) is needed to complete the task. When is this additional work justified?
Two scenarios can be mentioned.

The first is high fidelity systems. Dynamic analysis covers a wide range of applications. There is a subclass that
calls for a level of simulation precision beyond that customary in engineering analysis. Examples are deployment
of precision structures, resonance analysis of machinery or equipment, adaptive active control, ultrasonics imag-
ing, signature detection, radiation loss in layered circuits, and molecular- and crystal-level simulations in micro-
and nano-mechanics. In structural static analysis an error of 20% or 30% in peak stresses is not cause for alarm
— such discrepancies are usually covered adequately by safety factors. But a similar error in frequency analysis
or impedance response of a high fidelity system may be disastrous. Achieving acceptable precision with a fine
mesh, however, can be expensive. Model adaptivity comes to the rescue in statics; but this is less effective in
dynamics on account of the time dimension. Customized elements may provide a practical solution: achieving
adequate accuracy with a coarse regular mesh.



A second possibility is that the stiffness matrix comes from a method that avoids displacement shape functions.
For example, assumed-stress or assumed strain elements. [Or, it could simply be an array of numbers provided
by a black-box program, with no documentation explaining its source.] Under this scenario the concept of “con-
sistent mass matrix,” in which velocity shape functions are taken to coincide with displacement ones, loses its
comfortable variational meaning. One way out is to take the mass matrix of an element with similar geometry and
freedom configuration derived with shape functions, and to pair it with the given stiffness. But in certain cases,
notably when the FEM model has rotational freedoms, this may not be easy or desirable.

2 Parametrization Techniques

There are several ways to parametrize mass matrices. Three techniques found effective in practice are summarized
below. All of them are illustrated in the worked out examples in [1].

Matrix-Weighted Parametrization. A matrix-weighted mass template for element e is a linear combination of
(k + 1) component mass matrices, k ≥ 1 of which are weighted by parameters:

Me def= Me
0 + µ1Me

1 + . . . µkMe
k (1)

Here Me
0 is the baseline mass matrix. This should be an acceptable mass matrix on its own if µ1 = . . . µk = 0.

The simplest instance of (1) is a linear combination of the consistent and diagonally-lumped masses: Me def=
(1 − µ)Me

C + µMe
L. This can be reformatted as (1) by writing Me = Me

C + µ(Me
L − Me

C). Here k = 1, the
baseline is Me

0 ≡ Me
C , µ ≡ µ1 and Me

1 is the “consistent mass deviator” Me
L − Me

C .

A matrix-weighted mass template represents a tradeoff. It cuts down on the number of free parameters, which is
essential for 2D and 3D elements. It makes it easier to satisfy conservation and nonnegativity conditions through
appropriate choice of the Me

i . On the minus side it generally spans only a subspace of acceptable matrices.

Spectral Parametrization. This has the form

Me def= HT Dµ H, Dµ = diag [ c0µ0 c1µ1 . . . ckµk ] . (2)

in which H is a generally full matrix. Parameters µ0 . . . µk appear as entries of the diagonal matrix Dµ. Scal-
ing coefficients ci may be introduced for convenience. Some of the µ coefficients may be preset from a priori
conservation conditions.

Configuration (2) occurs naturally when the mass matrix is constructed first in generalized coordinates, fol-
lowed by transformation to physical coordinates via H. If the generalized mass is derived using mass-orthogonal
functions (for example, Legendre polynomials in 1D elements), the unparametrized generalized mass D =
diag [ c0 c1 . . . ck ] is diagonal. Parametrization is effected by scaling entries of this matrix. Some entries may
be left fixed, however, to satisfy a priori constraints. Expanding (2) and collecting matrices that multiply µi leads
to a matrix weighted combination form (1) in which each Me

i is a rank-one matrix. The analogy with the spectral
representation theorem of symmetric matrices is obvious. But in practice it is usually better to work directly with
the congruential representation (2).

Entry-Weighted Parametrization. An entry-weighted mass template applies parameters directly to every entry of
the mass matrix, except for a priori constraints on symmetry, invariance and conservation. This form is the most
general one and can be expected to lead to best possible solutions. But it is restricted to simple (usually 1D)
elements because the number of parameters grows quadratically in the matrix size, whereas for the other two
schemes it grows linearly.

Combined Approach. A hierarchical combination of parametrization schemes can be used to advantage if the
kinetic energy can be naturally decomposed from physics. For example the Timoshenko beam element studied
in [1] uses a two-matrix-weighted template as top level. The two components are constructed by spectral and
entry-weighted parametrization, respectively.
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