MODELLING AND SOLUTION OF THE BENDING PROBLEM OVER THE HELICAL WIRE STRAND

*Erdönmez C.¹ and İmrak C.E.²

¹ Istanbul Technical University, Institute of Informatics, Computational Faculty of Mechanical Engineering, Science and Engineering Program, 34469 Maslak, Istanbul, Turkey erdonmez@be.itu.edu.tr

² Istanbul Technical University, 34394 Gumussuyu, Istanbul, Turkey, imrak@itu.edu.tr

Key Words: Wire ropes, wire strands, bending problem, finite element solution.

ABSTRACT

Theory of wire rope is starts with the constructions of the nonlinear equilibrium equations in 1944 by Love. Governing equilibrium equations are taken as a starting point in most of the analytical analysis.

The six governing differential equations are presented below. Using the direction cosines and summing the forces N + dN, N' + dN' and T + dT along the element length ds respectively for x, y and z axis gives [1],

$$\frac{dN}{ds} - N'\tau + T\kappa' + X = 0, \\ \frac{dN'}{ds} - T\kappa + N\tau + Y = 0, \\ \frac{dT}{ds} - N\kappa' + N'\kappa + Z = 0.$$
(1)

Similarly the couples G + dG, G' + dG' and H + dH for the moments in x, y and z axes will give,

$$\frac{dG}{ds} - G'\tau + H\kappa' - N' + K = 0, \\ \frac{dG'}{ds} - H\kappa + G\tau + N + K' = 0, \\ \frac{dH}{ds} - G\kappa' + G'\kappa + \Theta = 0.$$
(2)

A loaded thin wire, with the force distribution over it, is shown in Figure (1-a) and a wire strand model is given in Figure (1-b). The arc length is described by the variable s over the thin wire. The general behavior of the wire ropes in different aspects in his papers and, gathered his works is presented by Costello in [2]. A simple straight strand with a center wire surrounded by six outer wires are modeled and solved for an applied force and twisting moment in [3] with the aid of Maple®. In this paper a simple straight strand subjected to a bending moment m_s will be investigated. First of all the equilibrium equations for the bending moment will be solved then the bending moment m_s will be derived. As a starting point, the spring was subjected to bending moment only shown in Figure (2-a). Considering this the following result occurs,

$$X = Y = Z = K = K' = \Theta = N = N' = T = 0.$$
 (3)

The equations of the equilibrium given in equations (1)-(2), while only the bending applied to a simple straight strand, becomes to the following form,

$$\frac{dG(s)}{ds} - G'(s)\tau_1 + H(s)\kappa_1' = 0, \\ \frac{dG'(s)}{ds} - \kappa_1 H(s) + \tau_1 G(s) = 0, \\ \frac{dH(s)}{ds} - \kappa_1' G(s) + \kappa_1 G'(s) = 0.$$
(4)

Equation given in (4) is solved by using Maple[®] and the results are found harmonious with the

solutions of Costello [2].

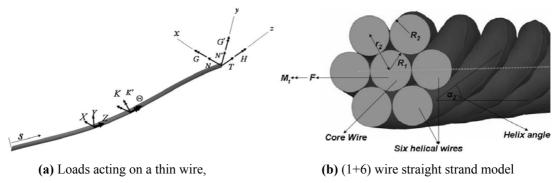
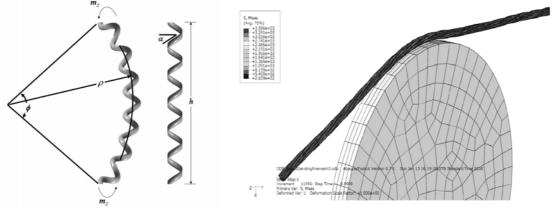



FIGURE 1. Loads on a thin wire and 7 wire strand model

The complex nature of the wire rope strand geometry is considered (Figure (1-b), Figure (2-b)) and a more realistic full model of the wire strand is created using commercial computeraided engineering packages. Bending problem construction includes more difficult wire interactions as shown in Figure (2-b). Applying bending moment over the straight wire strand over a sheave is modeled in Figure (2-b) and the strain/displacement distribution over the loaded strand is also analyzed. It is concluded that the strain/displacement distribution over the wire strand is found to be acceptable and harmonious with the analytical solutions.

(a) Bending applied to a helical spring,

(b) Wire strand bent over a sheave.

FIGURE 2. Bending problem of a wire strand

REFERENCES

- A.E.H. Love, A treatise on the mathematical theory of elasticity, 4th ed., New York: Dover, 1944 Publications, 1944, First American printing 1944, Chapter XVIII-XIX, pp. 381-426.
- [2] Costello GA. Theory of wire rope. Berlin: Springer, 1990.
- [3] Erdönmez C., İmrak C.E., General Nonlinear Equilibrium Equation Solution of the Straight Wire Strand, International Conference of Numerical Analysis and Applied Mathematics (ICNAAM), Hotel Marbella, Corfu, Greece, September 16-20, 2007
- [4] Costello, G.A. Large deflections of helical spring due to bending, Journal of Engineering Mechanics Division, ASCE, 103, (No.EM3, Proc. Paper 12964), 479-487, 1977
- [5] Costello, G.A. and Butson, G.J. A simplified bending theory for wire rope, Journal of the Engineering Mechanical Division, ASCE, 108, (EM2, Proc. Paper 16984), 219-227, 1982