APPLICATION-SPECIFIC ERROR CONTROL IN INVERSE IDENTIFICATION

* Håkan Johansson¹, Fredrik Larsson² and Kenneth Runesson³

¹Dept. Applied Mechanics ²fredrik.larsson@chalmers.se ³keru@chalmers.se Chalmers University of Tech. hakan.johansson@chalmers.se

Key Words: Parameter identification, Inverse identification, Goal-oriented error computation

ABSTRACT

In this contribution we will employ the idea of adaptive modeling in the context of a two-step computation consisting of (i) a parameter identification problem where the identified parameters are used as inputs in (s) a subsequent simulation. Hence, in the result from the simulation in (s), we can expect two sources of error; the classical discretization error arising from the introduction of an FE-approximation in (s), and errors in the identified parameters stemming from (i).

In a slightly more formal setting, we want to analyze the system

(i):
$$p = \arg\left[\min_{q \in P} \mathcal{F}(q, u^{(i)})\right], \text{ subject to } a^{(i)}(q, u^{(i)}, v) = l^{(i)}(v) \ \forall v \in V^{(i)}$$
(1)

(s):
$$a^{(s)}(p, u^{(s)}, v) = l^{(s)}(v) \ \forall v \in V^{(s)}, \text{ giving } \mathcal{Q}(u^{(s)}).$$
 (2)

In the parameter identification problem (i), the parameter $p \in P$ is determined from some sort of physical experiment. For example, p may represent a set of discrete material parameters, or a spatially varying function describing inhomogeneous material properties. The experimental setup is modeled by the state equation $a^{(i)}(p, u^{(i)}, v) = l^{(i)}(v)$ where the response $u^{(i)}$ depends on p. The objective function \mathcal{F} is typically a least-squares functional measuring the discrepancy between the computed response and the corresponding (experimentally) observed response. The parameter p that minimizes \mathcal{F} is used in the subsequent computation (s) to compute the goal quantity $\mathcal{Q}(u^{(s)})$ (sometimes referred to as "quantity of interest") via the solution of the state equation $a^{(s)}(p, u^{(s)}, v) = l^{(s)}(v)$.

We introduce suitable FE-approximations for the state variables in standard fashion, denoted $u_h^{(i)} \in V_h^{(i)} \subset V^{(i)}$ and $u_h^{(s)} \in V_h^{(s)} \subset V^{(s)}$, respectively. Moreover, we can also introduce a similar approximation of the parameter as $p_h \in P_h \subset P$ such that the discretized version of the system reads

(i):
$$p_h = \arg \left[\min_{q_h \in P_h} \mathcal{F}(q_h, u_h^{(i)}) \right], \text{ subject to } a^{(i)}(q_h, u_h^{(i)}, v) = l^{(i)}(v) \ \forall v \in V_h^{(i)}$$
(3)

(s):
$$a^{(s)}(p_h, u_h^{(s)}, v) = l^{(s)}(v) \ \forall v \in V_h^{(s)}, \text{ giving } \mathcal{Q}(u_h^{(s)}).$$
 (4)

The interpretation (and motivation) of $P_h \subset P$ depends on the specific application. For example, if p represents an arbitrary function describing a spatial inhomogeneity, we may introduce an approximation

 p_h of FE-type in terms of nodal values and basis functions. Another example is that of a model hierarchy, where a simple material model such as the Neo-Hooke model (P_h) is obtained by a suitable model restriction of the more general Ogden model (P). We remark that even in the case without explicit approximation of the parameters, i.e. $P_h = P$, we still get an error $e_p = p - p_h$ due to the discretization $V_h^{(i)} \subset V^{(i)}$. From the viewpoint of the simulation (s) with the goal quantity Q, we can perceive the error $e_p = p - p_h$ as a model error, while $e_u = u^{(s)} - u_h^{(s)}$ is the "classical" discretization error.

We employ the framework of goal-oriented a posteriori error estimation based on a dual problem to estimate the error $\mathcal{E} \stackrel{\text{def}}{=} \mathcal{Q}(u^{(\text{s})}) - \mathcal{Q}(u^{(\text{s})}_h)$, cf. Ainsworth and Oden [1], for the identification problem, Meidner and Vexler [2], Johansson et al. [3]. With the aid of the pertinent dual solutions and residuals, we can trace the error contributions to the different approximations defined by $V_h^{(i)}$, $V_h^{(\text{s})}$ and P_h , respectively. Here, the two problems (i) and (s) are truly separated, and we may adopt the approach by Larson et al. [4] for estimating error transport between different problems. The relative magnitude of the different (estimated) contributions can be used as feedback for adaptive improvement of the respective approximations.

REFERENCES

- M. Ainsworth and J. T. Oden. "A posteriori error estimation in finite element analysis". Comput. Methods Appl. Mech. Engrg., Vol. 142, 1–88, 1997.
- [2] D. Meidner and B. Vexler. "Adaptive space-time finite element methods for parabolic optimization problems". *SIAM J. Control Optim.*, Vol. **46**, 116–142, 2007.
- [3] H. Johansson, K. Runesson and F. Larsson. "Calibration of a class of nonlinear viscoelasticity models with adaptive error control". *Comput. Mech.*, Vol. 41, 107-119, 2007.
- [4] M. G. Larson, F. Bengzon and R. Söderlund. "Adaptive finite elements for multiphysics". *Adaptive Modeling and Simulation 2007 (Edited by K. Runesson and P. Díez)*, 142-143.