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ABSTRACT

In this contribution we will employ the idea of adaptive modeling in the context of a two-step compu-
tation consisting of (i) a parameter identification problemwhere the identified parameters are used as
inputs in (s) a subsequent simulation. Hence, in the result from the simulation in (s), we can expect two
sources of error; the classical discretization error arising from the introduction of an FE-approximation
in (s), and errors in the identified parameters stemming from(i).

In a slightly more formal setting, we want to analyze the system

(i) : p = arg

[

min
q∈P

F(q, u(i))

]

, subject to a(i)(q, u(i), v) = l(i)(v) ∀v ∈ V (i) (1)

(s) : a(s)(p, u(s), v) = l(s)(v) ∀v ∈ V (s), giving Q(u(s)). (2)

In the parameter identification problem (i), the parameterp ∈ P is determined from some sort of
physical experiment. For example,p may represent a set of discrete material parameters, or a spatially
varying function describing inhomogeneous material properties. The experimental setup is modeled by
the state equationa(i)(p, u(i), v) = l(i)(v) where the responseu(i) depends onp. The objective function
F is typically a least-squares functional measuring the discrepancy between the computed response and
the corresponding (experimentally) observed response. The parameterp that minimizesF is used in the
subsequent computation (s) to compute the goal quantityQ(u(s)) (sometimes referred to as ”quantity
of interest”) via the solution of the state equationa(s)(p, u(s), v) = l(s)(v).

We introduce suitable FE-approximations for the state variables in standard fashion, denotedu
(i)
h ∈

V
(i)
h

⊂ V (i) andu
(s)
h

∈ V
(s)
h

⊂ V (s), respectively. Moreover, we can also introduce a similar approxi-
mation of the parameter asph ∈ Ph ⊂ P such that the discretized version of the system reads

(i) : ph = arg

[

min
qh∈Ph

F(qh, u
(i)
h )

]

, subject to a(i)(qh, u
(i)
h , v) = l(i)(v) ∀v ∈ V

(i)
h (3)

(s) : a(s)(ph, u
(s)
h

, v) = l(s)(v) ∀v ∈ V
(s)
h

, giving Q(u
(s)
h

). (4)

The interpretation (and motivation) ofPh ⊂ P depends on the specific application. For example, ifp

represents an arbitrary function describing a spatial inhomogeneity, we may introduce an approximation



ph of FE-type in terms of nodal values and basis functions. Another example is that of a model hierarchy,
where a simple material model such as the Neo-Hooke model (Ph) is obtained by a suitable model
restriction of the more general Ogden model (P ). We remark that even in the case without explicit
approximation of the parameters, i.e.Ph = P , we still get an errorep = p−ph due to the discretization

V
(i)
h ⊂ V (i). From the viewpoint of the simulation (s) with the goal quantity Q, we can perceive the

errorep = p − ph as a model error, whileeu = u(s) − u
(s)
h is the ”classical” discretization error.

We employ the framework of goal-oriented a posteriori errorestimation based on a dual problem to

estimate the errorE
def
= Q(u(s)) −Q(u

(s)
h

), cf. Ainsworth and Oden [1], for the identification problem,
Meidner and Vexler [2], Johansson et al. [3]. With the aid of the pertinent dual solutions and residuals,
we can trace the error contributions to the different approximations defined byV (i)

h , V
(s)
h andPh, re-

spectively. Here, the two problems (i) and (s) are truly separated, and we may adopt the approach by
Larson et al. [4] for estimating error transport between different problems. The relative magnitude of the
different (estimated) contributions can be used as feedback for adaptive improvement of the respective
approximations.
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