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ABSTRACT

In this contribution we will employ the idea of adaptive mbdg in the context of a two-step compu-
tation consisting of (i) a parameter identification probletmere the identified parameters are used as
inputs in (s) a subsequent simulation. Hence, in the resartt the simulation in (s), we can expect two
sources of error; the classical discretization error agi$iom the introduction of an FE-approximation
in (s), and errors in the identified parameters stemming fipm

In a slightly more formal setting, we want to analyze the eyst
(i): p=arg [mi}gf(q,u(i))] . subject to  a®(g,uV,v) =1V (v) Vv e VO (1)
qe

s):  a®Dp,u® ) =190 Yo e VO, giving Q™). 2

In the parameter identification problem (i), the parameter P is determined from some sort of
physical experiment. For examplemay represent a set of discrete material parameters, ottialspa
varying function describing inhomogeneous material prioge The experimental setup is modeled by
the state equationV) (p, ), v) = 19 (v) where the responsé’) depends op. The objective function

F is typically a least-squares functional measuring therdgmcy between the computed response and
the corresponding (experimentally) observed responsep@tametep that minimizesF is used in the
subsequent computation (s) to compute the goal qua@@t;is)) (sometimes referred to as "quantity
of interest”) via the solution of the state equatigf (p, u®, v) = 1) (v).

We introduce suitable FE-approximations for the statealdes in standard fashion, denotﬁ:ﬁii> €

Vh(i) c v anduf’) € V,fs) c V), respectively. Moreover, we can also introduce a similgre-
mation of the parameter ag € P, C P such that the discretized version of the system reads

(i): pp=arg |:H1iII31 }"(qh,ug))} , subject to a(i)(qh,us),v) = l(i)(v) Yo € Vh(i) (3)
GnELR

(s): a® (ph,ués),fu) =1 () v e Vh(s), giving Q(u&ls)). 4)

The interpretation (and motivation) &4, C P depends on the specific application. For example, if
represents an arbitrary function describing a spatialimbgeneity, we may introduce an approximation



pn, Of FE-type in terms of nodal values and basis functions. Aeiogxample is that of a model hierarchy,
where a simple material model such as the Neo-Hooke mdelgli§ obtained by a suitable model
restriction of the more general Ogden modg&).(We remark that even in the case without explicit
approximation of the parameters, if¢, = P, we still get an erroe, = p — p;, due to the discretization

Vh(i) c V. From the viewpoint of the simulation (s) with the goal qugnt, we can perceive the
errore, = p — pp, as a model error, while, = ul® — uf) is the "classical” discretization error.

We employ the framework of goal-oriented a posteriori egstimation based on a dual problem to

estimate the errof % Q(u®) — Q(u"), cf. Ainsworth and Oden [1], for the identification problem,

Meidner and Vexler [2], Johansson et al. [3]. With the aidraf pertinent dual solutions and residuals,
we can trace the error contributions to the different apipnaxions defined by, (i), Vh(s) and Py, re-
spectively. Here, the two problems (i) and (s) are truly sajed, and we may adopt the approach by
Larson et al. [4] for estimating error transport betweefed&nt problems. The relative magnitude of the
different (estimated) contributions can be used as feddtmm@daptive improvement of the respective
approximations.
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