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ABSTRACT

Chaotic dynamics have strongly been affected by the global structure of phase space. At the period-
ical steady state, the feature can be estimated by power spectra of converged periodic orbits. In non-
autonomous systems, the power spectra of resonant frequencies and harmonics have an important role
to distinguish the behavior. On the other hand, chaos has broadly spread power spectra except the dis-
crete characterized spectra. The spectra include the information of global structure of phase space, even
in the transient state directing to convergence. This report focuses on the decomposition of phase space
of a nonlinear system based on the concept of spectrum partition [1]. The classical spectrum analysis
possibly reveals the hidden feature of global structure related to power distribution and invariant sets
[2]. Recently, the possibility of analysis on phase space topologies through periodic orbit [3].

The spectral partition is applied to Duffing system;{
ẋ = y,
ẏ = −ky − x3 + A cos t.

(1)

The parameters are set according to Ref. [4]. Here, the damping coefficient k is set at 0 and external
force A at 0.2 for the demonstration. In the case, the system shows chaotic sea with resonant and
harmonics solutions. Fig. 1 shows the distribution of components of power spectra 　 on the initial
value plane. For each point on the plane (x, y), the trajectories are integrated and the power specta
are obtained. The contrast of the figure implies the strength of each component in 120 periods. The
fundamental component has the highest contrast at the center of white region (see Fig. 1(a)). The 3rd
harmonics also shows the highest contrast in the region where a resonant solution exists (see Fig. 1(b)).
In the dark ring surrounding the resonant region, the 3rd component does not exist. In the chaotic
sea, the component is low. The boundary of chaotic sea is not clearly distinguished but includes the
information.

The 1/3 subsynchronous component exists at the boundary of fundamental resonant region and arounds
the three fixed points of 1/3 (see Fig.1 (c)). Fig.1(d) shows the continuous componetnt except harmon-
ics. The chaotic sea remarkably shows almost homogeneous distribution of dots. It implies the diffusion



of power spectrum shows globally even strength in the sea. However the boundary between the resonant
region and the sea is not clearly obtained by the decomposition. This depends on the phase structure of
the invariant sets [5]. The similar characteristics can also been observed in Lyapunov spectra distribu-
tion [6].

In this report, we applied a simple power spectrum analysis to understand the structure of phase space
related to the chaotic sea in Duffing system. As for the system with a damping, it is also discussed
that the invariant sets can be grasped by the spectrum analysis based on the detail decomposition at the
boundary. We are going to analyze the stability of foliations by using the decomposition.
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Figure 1: Distribution of power spectrum. (a) fundamental component, (b) 3rd harmonics, (c) 1/3 subsyn-
chronous component, and (d) continuous power components harmonics.
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