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ABSTRACT

This paper presents the Source Stabilized Petrov-Galerkin (SSPG) method for solving reaction-
diffusion problems described by the modified Helmholtz operator. This new stabilized finite element
formulation improves the accuracy over the Galerkin, GGLS [1] and PGEM [2] methods. The method
is shown to be of the Petrov-Galerkin type and consists in modifying the weighting function. The stabi-
lized formulation is also shown to be equivalent to a modified equation solved by the Galerkin method.
The modified partial differential equation is obtained from the first order Taylor series expansion around
mesh nodes of the terms contained in the original equation. The performance of the SSPG method is
illustrated on one- and two-dimensional problems and the results are compared with those provided by
the Galerkin, GGLS, PGEM and the mass lumping of the source term (MLST). For the one-dimensional
case and a uniform mesh the new method yields the exact nodal solution as the GGLS formulation. The
SSPG is shown to perform better than the other methods in the two-dimensional case.

Lets consider the model problem: σ2u − ε2∆u − f = 0 on Ω.

Therefore the stabilized SSPG formulation is: Find uh ∈ Vh such that
∫

Ω

σ2uhNI dΩ +

∫

Ω

ε2∇uh · ∇NI dΩ −
∫

Ω

fNI dΩ

−
∫

Ω

ξI∇
(

σ2uh − ε2∆uh − f
)

· (x− xI)NI dΩ =

∫

Γq

qNI dΓ, ∀NI ∈ V 0
h , (1)

where

ξI =
cosh(

√
6αI) + 2

cosh(
√

6αI) − 1
− 1

αI

, αI =
σ2h2

I

6ε2
. (2)

The SSPG equation can also be formulated as a Petrov-Galerkin method in the form:
∫

Ω

σ2uhNI dΩ +

∫

Ω

ε2∇uh · ∇NI dΩ −
∫

Ω

fNI dΩ

+
∑

K

∫

ΩK

ξI

(

σ2uh − ε2∆uh − f
)

[ndNI + (x − xI) · ∇NI ] dΩ =

∫

Γq

qNI dΓ. (3)



where nd is the dimension of the problem (nd = 1, 2 or 3).

Results are shown here for a test problem having the analytical solution

u(x, y) = 1 −
sinh

(

σ

ε
(1 − x)

)

2 sinh
(

σ

ε

) −
sinh

(

σ

ε
(1 − y)

)

2 sinh
(

σ

ε

) , for 0 ≤ x, y ≤ 1. (4)

Dirichlet conditions are imposed on the boundaries. The mesh is shown in Fig. 1 and the exact nodal
solution is illustrated in Fig. 2 for σ2 = 1, ε2 = 10−8 and f = 1. Solution errors with respect to
the exact solution at P (x = 0.05, y = 0.05) when varying ε2 are shown in Fig. 3. The error of the
Galerkin method is much higher than that of the other methods and hence it was not included. For
very low and for very high diffusion coefficient all stabilized methods perform well. Discrepancies are
observed for ε2 between 10−6 and 10−2 when the appropriate balance between the natural diffusion and
the anti-diffusive contribution of the source term need to be reached. The results indicate that PGEM
overestimates the exact solution (not enough diffusion), whereas the MLST solution is over-diffusive.
The mean nodal error is shown in Fig. 4 for the various finite element solutions. The SSPG method
leads to the most accurate solution for all values of the diffusion coefficient.
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Figure 1. Mesh for two-dimensional problem Figure 2. Exact nodal solution for ε2 = 10−8

10
−8

10
−6

10
−4

10
−2

10
0

−0.05

0

0.05

0.1

ε2

u−
u ex

 a
t (

x=
0.

05
;y

=
0.

05
)

GGLS
PGEM
MLST
SSPG

10
−8

10
−6

10
−4

10
−2

10
0

10
−8

10
−6

10
−4

10
−2

ε2

N
od

al
 E

rr
or

Galerkin
GGLS
PGEM
MLST
SSPG

Figure 3. Solution errors at P (x = 0.05, y = 0.05) Figure 4. Mean nodal error
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