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ABSTRACT

This talk proposes and analyzes an anisotropic sparse grid stochastic collocation method for the ap-
proximation of statistical quantities related to the solution of partial differential equations with random
coefficients and forcing terms (input data of the model). This method is an extension of the Sparse
Grid Stochastic Collocation method analyzed in [7], which consists of a Galerkin approximation in the
space variables and a collocation, in probability space, on sparse tensor product grids utilizing either
Clenshaw-Curtis or Gaussian knots. Even in the presence of nonlinearities, the collocation approach
leads to the solution of uncoupled deterministic problems, just as in the Monte Carlo method.

Our previous sparse collocation procedure is very effective for problems whose input data depend on
a moderate number of random variables, which “weigh equally” in the solution. For such an isotropic
situation the displayed convergence is faster than standard collocation techniques built upon full tensor
product spaces.

On the other hand, the convergence rate deteriorates when we attempt to solve highly anisotropic prob-
lems, such as those appearing when the input random variables come e.g. from Karhunen-Loève-type
truncations of “smooth” random fields. In such cases, a full anisotropic tensor product approximation
may still be more effective for a small or modest number of random variables. However, if the num-
ber of random variables is large, the construction of the full tensor product spaces becomes infeasible,
since the dimension of the approximating space grows exponentially fast with respect to the number of
random variables in the problem.

Instead, this work proposes the use of anisotropic sparse tensor product spaces constructed from the
Smolyak algorithm utilizing suitable abscissas. This approach is particularly attractive in the case of
truncated expansions of random fields, since the anisotropy can be tuned to the decay properties of the
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expansion. We present optimal a priori and a posteriori procedures for tuning the anisotropy of the
sparse grids to each given problem. These procedures have been shown to be very effective in quan-
tifying uncertainty for several complex stochastic systems of equations. In this talk we will highlight
examples from computational mechanics; in particular, fluid mechanics and engineering sciences.

This work also provides a rigorous convergence analysis of the fully discrete problem and demon-
strates: (sub)-exponential convergence in the asymptotic regime and algebraic convergence in the pre-
asymptotic regime, with respect to the total number of collocation points. Numerical examples illustrate
the theoretical results and are used to compare this approach with several others, including the standard
Monte Carlo. In particular, for moderately large dimensional problems, the sparse grid approach with a
properly chosen anisotropy seems to be very efficient and superior to all examined methods.
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