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ABSTRACT 

Algorithms that eliminate any non-zero response in a high-frequency mode after one 
time step are referred as asymptotic annihilation algorithms [1]. Numerical dissipation 
is desirable since the high-frequency response is typically an artefact of structural 
discretisation (mesh refinement). In the present paper, a very efficient asymptotic 
annihilation algorithm [2] in terms of accuracy and computational efforts is employed to 
integrate non-linear equilibrium equation.  

The step-by-step integration algorithm to be considered in this paper takes into account 
the following fourth-order Hermitian operators [1] 
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where t∆  is the time step, y  is the function to be integrated (the time derivative notation 
by roman numeral as exponent is employed). 

Starting point of the non-linear dynamic analysis can be expressed in matrix notation by  
II IMy Cy Ky f n+ + = +  

with mass matrix M, damping matrix C, stiffness matrix K, given vector forces f and 
any non-linear parts represented by vector n. Taking into account the above equilibrium 
equation an its derivative those Hermitian operators can be rewrite as 
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where 
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which is the recurrence equation for the proposed algorithm. It is important to point out 
that for lumped model (matrices M and C diagonal) the factorization of this recurrence 
equation involves the factorization of matrix 1E DA B−− only (this is the factorization of a 
matrix of order n). 

In order to illustrate the numerical efficiency, a classical non-linear single degree of 
freedom [3] governed by the equation 
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where N0 is the magnitude of the pre-stressed force, ES is the elastic product and  is 
the length of the bar, is considered. 

The following table compares the non-linear relative period error obtained against the 
Newmark method results. It is important to register that these algorithms are fourth-
order local truncation error as explicitly one can see from the Hermitian operators above 
presented and second-order global truncation error (period elongation).  

Relative Period Error  

t∆  Tn/10 Tn/25 Tn/50 Tn/100 
Annihilation 1.18 10-2 3.14 10-4 9.72 10-3 1.01 10-4 

Newmark 2.22 10-2 3.10 10-3 7.43 10-4 2.03 10-4 

  

The results shown indicate that although the proposed algorithm presents the desired 
annihilation property the accuracy is in competition with the most popular Newmark 
scheme. 
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