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ABSTRACT

Many hypersurfaces in R can be viewed as the boundary or a subset of the bouritlafyan open
subset2 of R". In such cases theriented distance function bq, to the underlying sef2 completely
describes the surface: its (outward) normal is the gradieRtbq, its first, second, third, ..., ani-th
fundamental forms ar&bg ® Vbq, its HessianD?bg, (D?bg)?, ... and(D?bg )N ! restricted to the
boundaryl’ ([8], [11, Chapter 8§ 5]). In addition, a fairly complete intrinsic theory of Sdbwe spaces
onCl!-surfaces is available in [5].

In the theory of thin shells, the asymptotic model, when is&x only depends on the choice of the
constitutive law, the midsurface, and the subspace of the space of solutions that properijldmihe
loading applied to the shell. A central issue is how roughk thidsurface can be to still make sense
of asymptoticmembrane shell andbending equations without ad hoc mechanical or mathematical as-
sumptions. This is possible for a gene€al!-midsurface with or without boundary such as a sphere,
a donut, or a closed reservoir. Moreover, it can be done witluzal maps, local bases, and Christof-
fel symbols via the purely intrinsic methods developed byf@e and Zolésio starting in 1992 with
[9] and in a number of subsequent papers. The key paper [2]ingasic methods in the asymptotic
analysis of three models of thin shells for an arbitrarydin8D constitutive law. They all converge to
asymptotic shell models that consist of a coupled systemwof/ariational equations. They only differ
in their resulting effective constitutive laws. The firstuatjon yields the generally accepted classical
membrane shell equation and the Love-Kirchhoff terms. The second is a generalimeding equation.

It explains that convergence results for the 3D models welgastablished for plates and in the bend-
ing dominated case for shells. From the analysis of the thredels, the richeP(2, 1)-model turns
out to be the most pertinent since it converges to the rigithatotic model with the right effective
constitutive law. We also show in [3] that models of the Nagtgipe can be obtained directly from the
P(2,1)-model by a simple elimination of variables without intrethg the a priori assumption on the
stress tensarss = 0. Bridges are thrown with classical models using local basespresentations.

Those results are completed in [3] with the characteriratithe space of solution for the(2, 1) thin
shell model and the space of solutions of the asymptotic mameshell equation in [4]. This character-
ization was only known in the case of the plate and uniforniilptéec shells. In [6], a new choice of the
projection leads to the disappearance of the coupling terina second asymptotic equation. After re-
duction of the number of variables, this changes the forrh@tecond equation to achieve the complete



decoupling of the membrane and bending equations witheutldssical plate or bending dominated
assumptions. In the second part of [6], we present a dynathiosshell model for small vibrations and
investigate the corresponding dynamical asymptotic madedy complete [2] and connect with most
existing results in the literature thus confirming the memice and the interest of the methods we have
developed. Extensions of ti&(2, 1)-model have also been developed for piezoelectric shell ghd

a complete decoupling of the membrane and bending equasiahso obtained.
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