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In nonlinear finite element analysis, loads are usually applied in increments and the 
corresponding incremental displacements are obtained by solving the global equilibrium 

equations.  The incremental strains can be computed from the incremental displacements in the 

usual way. A set of ordinary differential equations must then be solved to find the stress 
increment based upon the known strain increment.  This system of equations may be written as: 
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where σ  is the true (Cauchy) stress tensor, ep
C  is the constitutive matrix,ε  denotes the strain 

tensor, κ  represents a set of hardening parameters, B is a function derived from the hardening 

laws, λɺ  is a positive scalar called the plastic multiplier.  For large deformation analysis, the 

stress-strain relations can no longer be expressed as simply as equation (1), since the 
components of the true stresses may change due to possible rigid body motion.  In other words, 

the principle of objectivity requires that rigid body motion must induce no extra strain in the 

material.  Objectivity is usually satisfied by introducing a frame-independent stress-rate into the 
stress-strain relations.  The most commonly used stress rates in large deformations problems of 

geomechanics are the Jaumann stress rate and the Truesdell stress rate (see e.g. [1]).  

Introducing, for instance, the Jaumann stress rate into the constitutive equations, one can write: 
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where ω is the spin tensor.  Equation (2) shows that the effect of rigid body motion must be 

introduced to the constitutive equations during stress integration.  This effect can be introduced 

either before, after or during integration of the constitutive equations, providing three alternative 

algorithms.  However, no theoretical advantage exists for selecting any one of these three 
strategies.  Moreover, it appears that the advantages and disadvantages of one strategy over the 

others have not yet been reported in the literature (see [1]).  This study attempts to compare 

alternative algorithms for integrating stress-strain relations in a large deformation analysis. 

Algorithm 1 includes the following steps:  1-Enter with stresses t

ijσ , the strain increment 
ijε∆  

and the spin tensor increment
ijω∆ .  2- Correct t

ijσ  for rigid body rotation (2
nd
 term on RHS of 

(2)) to find t

ijσɶ .  3- Integrate stress-strain relations (3rd term on RHS of (2)) with t

ijσɶ  and ijε∆ to 

find t t

ijσ +∆ .  Note that in step 3 a stress-integration scheme used in small deformations analysis 

may be invoked.  Algorithm 2 performs the following steps:  1-Enter with stresses t

ijσ , the strain 



 

increment 
ijε∆  and the spin tensor increment

ijω∆ .  2- Integrate stress-strain relations (3
rd
 term 

on RHS of (2)) with t

ijσ  and 
ijε∆ to find t

ijσɶ .  3-Correct t

ijσɶ  for rigid body rotation (2nd term on 

RHS of (2)) to find t t

ijσ +∆ .  Algorithm 3 integrates the stress-strain relations and the correction 

due to rigid body motion simultaneously over the increment.  This algorithm is based on the 

original work developed by Sloan [2].  Due to lack of space, this algorithm is not explained in 

detail here.  Further details can be found in references [1] and [3]. 

To investigate the performance of three alternative stress-integration algorithms described 

above, a rigid rough footing on an undrained soil layer represented by an associated Tresca 

model is considered.  Refer to Figure 1 for geometry, material properties and the predicted load-
displacement curve.  This load-displacement curve was obtained using the Arbitrary-

Lagrangian-Eulerian (ALE) method based on incorporation of the Jaumann stress rate into the 

analysis (see [1] for more details). 

The load-displacement curves obtained using all three algorithms are more or less similar to the 

plot shown in Figure 1.b.  Thus in terms of accuracy, all algorithms provide essentially the same 

solution.  To study the efficiency of each 

algorithm, the CPU times and the number 

of iterations necessary to achieve 

equilibrium in each analysis are shown in 
Table 1.  This table shows that Algorithm 

1 requires less equilibrium iterations 

compared to Algorithms 2 and 3.  

Although the difference between the 

performance of Algorithms 1 and 2 is not 

significant, both clearly outperform 

Algorithm 3.  No significant advantage between Algorithm 1 and Algorithm 2 is demonstrated 
by this example.  However, these two algorithms outperform Algorithm 3 in terms of efficiency. 

 

REFERENCES 

[1] M. Nazem, D. Sheng and J.P. Carter, “Stress integration and mesh refinement in numerical 

solutions to large deformations in geomechanics”, Int J Numer Anal Engng., Vol. 65, pp. 

1002-1027, (2006). 

[2] S.W. Sloan, “Substepping schemes for the numerical integration of elastoplastic stress-

strain relations” , Int J Numer Anal Engng., Vol. 24, pp. 893-911, (1987). 

[3] S.W. Sloan, A.J. Abbo and D. Sheng, “Refined explicit integration of elastoplastic models 

with error control” , Engng Comput., Vol. 18, pp. 121-154, (2001). 

Figure 1. Analysis of rigid rough footing on an undrained layer of soil. 

B 

S
m
o
o
th
 

S
m
o
o
th
 

Rough boundary 

12B 

8
B 

 B = 0.5 
 E/cu = 100 
 ν  = 0.49 
 φ  = 0° 
 ψ  = 0° 

a. Geometry and material 

0

2

4

6

8

10

0 1 2 3

ALE (Jaumann)

Small deformations

b. Load-displacement response 

P
re
ss
u
re
 u
n
d
er
 f
o
o
ti
n
g
 /
 c

u
 

Settlement / B 

 Algorithm CPU time  

(Sec) 

Total iterations 

1 5687 1999 

2 6138 2176 

3 16039 2040 

 
Table 1. CPU time and total equilibrium iterations 

of alternative stress integration algorithms. 


