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ABSTRACT

3D Coulomb’s friction The article is devoted to the study of numerical methods for 3D Coulomb’s
friction based on Nonsmooth Newton’s method and Nonlinear Complementarity Problem (NCP) for-
mulations. Let us introduce the finite–dimensional (eventually after a FEM space–discretization) dy-
namics of a mechanical systems subjected to 3D Coulomb’s friction with unilateral constraints. Taking
into account possible nonsmooth evolutions, the system is formulated in terms of a measure differential
inclusion




M(q(t))dv + N(q(t), v+(t))dt + Fint(t, q(t), v
+(t)) dt = Fext(t) dt + dr

v+(t) = q̇+(t)

U+(t) = ∇Tg(q)v+(t), U−(t) = ∇Tg(q)v−(t)

dr = ∇g(q)dR

If g(q) 6 0 thenC∗ ∋ [UN(t
+) + µ‖UT(t

+)‖ + eUN(t
−), UT] ⊥ dR ∈ C

(1)

whereq, v are the coordinates (or the displacements) and the velocities,dv, dr are differential mea-
sures,dt is the Lebesgue measureM,N are respectively the mass matrix, the gyroscopic acceleration,
Fint, Fext the internal forces and the external forces,g defines the constraints or the local coordinates
at contact,U, dR the local relative velocity and the measure of contact efforts. The subscript·N and·T
defines their normal and tangential components at contact,C is the second order Coulomb’s cone,i.e.
C = {R, ‖RT‖ 6 µ|RN|} andC∗ its dual whereµ is the coefficient of friction, ande is the newton’s
coefficient of restitution. More details can be found in [1].
Moreau’s time-stepping scheme.The system is linearized by Newton’s method and is time–discretized
by Moreau’s scheme [2] (see [1] for details). One gets





Uk+1 = ŴPk+1 + Ufree

Ûα
k+1 =

[
Uα

N,k+1 + eαUα
N,k + µα ||Uα

T,k+1||, U
α
T,k+1

]T

C
α,∗ ∋ Ûα

k+1 ⊥ Pα
k+1 ∈ C

α



 ∀α ∈ Ia(q̃k+1)

(2)



whereW = ∇T g(q̃k+1)M̂
−1∇g(q̃k+1) is the Delassus operator andIα the index set of the forecast

constraints,Ufree the velocity without constraints and̃qk+1 a prediction of the position. At each time
step the time–discretized linear one–step nonsmooth problem (2) which is a second order cone comple-
mentarity problem (SOCCP) has to be solved for the unknownsUk+1 the discrete relative velocity and
Pk+1 the discrete impulse.

Nonsmooth Newton’s methodsThe pioneering work of Alart and Curnier [3] extends the standard
Newton’s method to the case of a nonsmooth but continuous functions. The formulation and the
associated numerical method is based on an equation based formulation of the system (2) thanks to the
projection operatorproj onto the friction diskD(µRN) = {RT, ‖RT‖ 6 µ|RN|}:


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where ρα
N > 0, ρα

T ∈ IR2
+ \ {0} for all α ∈ Ia(q̃k+1) and the modified friction disk is

D̂
α(Pα

N,k+1, U
α
N,k+1) = D(µ(projIR+

(Pα
N,k+1 − ρα

N (Uα
N,k+1 + eαUα

N,k)))) for all α ∈ Ia(q̃k+1). We
recall that· ◦ · is the Hadamard product of vectors.

In this work, this method is used as a reference method to compare with other formulations and with
new algorithms. Moreover, we propose a line–search procedure to extend its convergence properties.

Nonsmooth Newton’s methods based on Fischer–Burmeister function In [4], a NCP reformulation
of the SOCCP (2) is derived in the form

0 6 F (z) ⊥ z > 0 (4)

with F (z) = W̃ z + g(z) + q wherez, Ŵ , q and the smooth functiong are defined in [4]. Once we
obtain this formulation, we reformulate it in terms of nonsmooth equations thanks to the well–known
Fischer–Burmeister function [5].

ResultsThe comparison between these two approaches plus other projection/splitting formulations is
studied on several standard examples. The efficiency of line–searches is analyzed. Finally, the algo-
rithm is compared to the robust and widespread solver for NCP, the PATH solver [6]. Detailed of the
implementation into SICONOS [7] http://siconos.gforge.inria.frwill be given.
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