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ABSTRACT

Spectral elements are well established in the field of computational seismology, specially because they
inherit the flexibility of finite element methods and have low numerical dispersion error. The latter is
experimentally acknowledged, but is theoretically known in limited cases, such as Cartesian meshes
[2]. It is well known that a finite element mesh can contain distorted elements that generate numerical
errors for very large distortion. In the present work we study the effect of element distortion on the
numerical dispersion error and determine the distortion range in which an accurate solution is obtained
with a given error tolerance.

We consider spectral elements for the 2D acoustic wave equation ü(x, t) = c2∆u(x, t). Let us write
its semi-dicretization in space in the form Mü∗(t) + c2Ku∗ = 0, where u∗

p(t) ≈ u(xp, t) and M ,K
are the mass and stiffness matrices, respectively. Plugging into this system a harmonic plane wave
u∗(t) = exp(−iω∗t)w, wp = exp(iκ · xp), we find

Kw = χMw, χ = (ω∗/c)2 . (1)

This is an over-constrained system of equations for χ. We approximate χ in the least-squares sense by
the Rayleigh quotient

χ∗ =
wT Kw

wT Mw
, i.e., ω∗ = c

√
wT Kw

wT Mw
. (2)

Assuming an unbounded, periodic mesh formed by the repetition of a patch of Ne elements (as in
Figure 1), we have that (2) reduces to

χ∗ =
∑Ne

e=1 we
T Kewe∑Ne

e=1 we
T M ewe

, (3)

where M e, Ke, and we are element restrictions of the global arrays M , K, and w. For Cartesian
meshes, expression (3) reduces to Rayleigh quotients of element matrices from 1D problems. The esti-
mate (3) is similar in fully-discrete schemes (e.g., χ = (2 sin(ω∗∆t/2)/∆t)2 for the leapfrog scheme).



Let κ = κ(cos θ, sin θ). We evaluate κ from the number of grid points per wavelength

G =
λ

∆x
=

2π

|κ|∆x
, ∆x =

1
N

√√√√ 1
Ne

Ne∑
e=1

|Ωe|, (4)

where N is the polynomial degree and |Ωe| the area of the e-th element of the patch that generates the
mesh. Note that ∆x corresponds to the standard definition for square elements.

We used the dispersion estimate (3) to study the dispersion of spectral elements in several meshes, in
particular the periodic mesh defined in [1], summarized in Figure 1. The central node of the patch moves
along the dashed line so that the internal angle of the upper corner of the element 1 varies from 90o

(square) to 180o (square degenerated to a triangle). Figure 2 shows the variation with α of the phase
error (c∗ − c)/c, c∗ = ω∗/κ, considering Chebyshev and Legendre collocation points with G = 5
and N = 8. The Chebyshev spectral element uses an optimal blended operator [2]. We see that both
methods have a low sensitivity (for a large range of the element distortion) to the mesh deformation at
this refinement level, confirming the high accuracy of spectral element methods, even in distorted grids.
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Figure 1: Mesh generated by a patch of four non-rectangular elements.

Figure 2: Phase error versus element distortion for eighth-degree spectral elements with Chebyshev
(left) and Legendre (right) collocation points. The number of grid points per wavelength is five.
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