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ABSTRACT

Many computational problems require the solution of saddlepoint systems. Examples include the so-
lution of the Navier-Stokes equations for incompressible flow, contact problems in solid mechanics,
optimization problems, and domain decomposition methods.The most general form of this problem is
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Usually the matrixK is zero but it may be nonzero due to the presence of stabilization terms when
solving the Navier-Stokes equations. Also it sometimes occurs thatD = GT , but we choose to consider
the most general case here. The matrixA is generally indefinite (i.e. it has eigenvalues with both positive
and negative real parts).

The system (1) can be solved by Krylov subspace methods such as CG, BCGStab, TFQMR, or GMRES
[1]. Since these systems are indefinite and typically very large, it is necessary to use preconditioning
in order to obtain acceptable solution times. Here, we describe the new multi-step preconditioner for
saddle-point problems that is based on LU factorization of the approximation of the block matrix in
Eq. (1)
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HereS̃ is approximate Schur complement matrixS̃ = K−DF̃−1G. LU factorization in Eq. (2) is used
in an iterative algorithm, thus resulting in multi-step saddle point preconditioner
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Performance of the saddle point preconditioner given by Eq.(3) depends on the choice of the approxi-
mate inverse used in the solution of the Schur complement problem. Here we construct pseudo-inverse
of the Schur complement matrix by minimizing the Frobenius norm of the the matrix

Λ = I − F̃−1F. (4)
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Figure 1: Performance of the saddle-point preconditioner for a driven cavity.

HereF is the first matrix on the main diagonal of the block matrix in Eq. (1) andF̃−1 is its approximate
inverse.

Application of this preconditioner is demonstrated in the case of incompressible flow problems dis-
cretized by finite element method. The performance of the newpreconditioner is illustrated in Fig. (1)
where an excellent convergence rate of the solver together with improved preconditioned spectrum are
observed. Additional examples including large 3D problemsand applications of the preconditioner to
the domain decomposition simulations show that the new saddle preconditioner has favorable prop-
erties. Additional considerations regarding the implementation of the preconditioning algorithm and
optimality of the pseudo-inverse are also included. Finally, the connection of the preconditioner and
existing iterative methods used in computational fluid dynamics is highlighted and advantages of the
proposed algorithm over the traditional methods are emphasized.
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