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ABSTRACT

Many computational problems require the solution of sagdi@t systems. Examples include the so-
lution of the Navier-Stokes equations for incompressibdevflcontact problems in solid mechanics,
optimization problems, and domain decomposition meth®ds.most general form of this problem is
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Usually the matrixK is zero but it may be nonzero due to the presence of staliizé¢rms when
solving the Navier-Stokes equations. Also it sometimesiccthatD = G, but we choose to consider
the most general case here. The mattiis generally indefinite (i.e. it has eigenvalues with bothifre
and negative real parts).

The system (1) can be solved by Krylov subspace methods suetaBCGStab, TFQMR, or GMRES
[1]. Since these systems are indefinite and typically vemyeait is necessary to use preconditioning
in order to obtain acceptable solution times. Here, we da@sche new multi-step preconditioner for
saddle-point problems that is based on LU factorizationhefdpproximation of the block matrix in

Eq. (1)
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HereS is approximate Schur complement matfix= K — DF~'G. LU factorization in Eq. (2) is used
in an iterative algorithm, thus resulting in multi-step diedpoint preconditioner
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Performance of the saddle point preconditioner given by(8qdepends on the choice of the approxi-
mate inverse used in the solution of the Schur complemeiigmmo Here we construct pseudo-inverse
of the Schur complement matrix by minimizing the Frobeniasm of the the matrix

A=I-F'F (4)
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Figure 1: Performance of the saddle-point preconditioneafdriven cavity.

HereF is the first matrix on the main diagonal of the block matrix ip El) andF—! is its approximate
inverse.

Application of this preconditioner is demonstrated in tlse of incompressible flow problems dis-
cretized by finite element method. The performance of the prewonditioner is illustrated in Fig. (1)
where an excellent convergence rate of the solver togethierimproved preconditioned spectrum are
observed. Additional examples including large 3D problemd applications of the preconditioner to
the domain decomposition simulations show that the newlegai@conditioner has favorable prop-
erties. Additional considerations regarding the impletagon of the preconditioning algorithm and
optimality of the pseudo-inverse are also included. Fpnalie connection of the preconditioner and
existing iterative methods used in computational fluid dagita is highlighted and advantages of the
proposed algorithm over the traditional methods are empégs
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